NOAA/CRRC Oil Spill Modeling Workshop

State of the art

- The future
- Research questions to be addressed

... in 10 minutes....

Durham, NH 26-06-2007

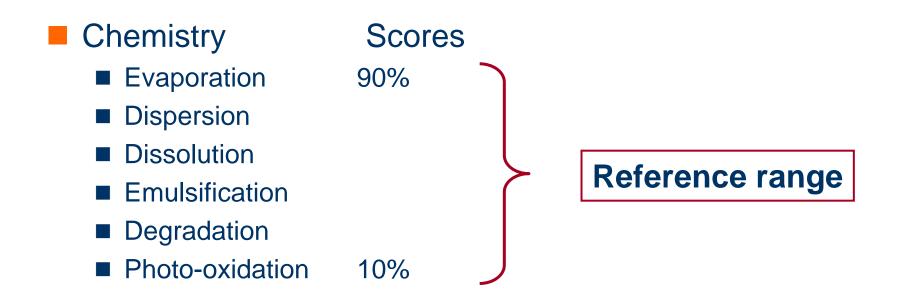
Mark Reed mark.reed@sintef.no

Purposes of oil spill models: decision-support tools

- Contingency planning
- Spill response
- Net environmental benefit analysis
- Natural resource injury and damage assessment

Aspects of applications

- Physics winds, waves, currents; ice, shorelines, sediments
- Chemistry evaporation, dispersion, dissolution, emulsification, degradation, photo-oxidation
- Biology behavior, exposure, effects; individuals, populations, ecosystems


Scoring:

- 90% means we're wonderfully happy with the state of the art
- 10% means we have a long way to go in this area

Relative State-of-the-Art versus Research Recommendations:

- Low score does not necessarily imply a high research priority
- Place our efforts
 - Where they will lead to the most improvement in decision support Or
 - Were we can fill gaps not being addressed elsewhere in the R&D world

Physics	Scores
Winds	60%
Currents	50
Waves	40
	20
Sediments	30
Shorelines	40

.

Chemistry	Scores
Evaporation	90%
Dispersion	50
Dissolution	70 given dispersion of a known mass, composition and droplet size distribution
•	30 otherwise
Emulsification	70 with weathering data
•	30 without
Degradation	70 dissolved, water column
•	50 droplets, water column
•	30 sediments
Photo-oxidation	50 with weathering data
•	10 without

.

BiologyScoreBehavior80% sessile organisms40 otherwise40 otherwiseExposure30% sessile
(60% x 70% x 80%, currents x dissolution x behavior)20% otherwise20% otherwiseEffects70% acute, given an exposure
20% chronic

. . .

Physics: the future

- is (almost) now!
- Currents, winds, waves
 - Nowcast-forecast: integrated global local applications
 - As in weather models
 - Wave modeling
 - Probably the least standard component
 - Not included explicitly in most oil spill models

Ice

- Work on-going
- Focus on small (m) and large (km) scales
- Also a challenge to integrate the two
- Shorelines: needs work
- Sediments: needs work

The future: chemistry

The Grail: to predict weathering process rates soley from oil composition

- Emulsification remains the toughest nut
- Role of photo-oxidation in both emulsification and degradation has not been quantified
- Characterization of degradation products and "UCM"
 - Solubilities
 - Toxicities
 - Degradation rates

Need to understand rheology of weathered oil, not just the viscosity

The future: biology

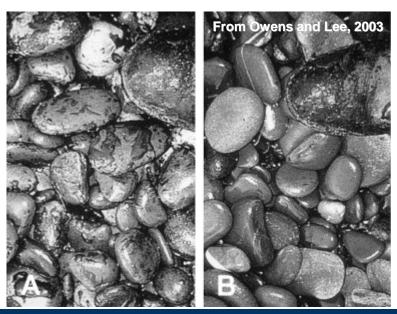
The Grail: estimation of individual, population, and ecological effects within reasonable and quantifiable uncertainty limits

Behavior modeling

- Verisimilitude is very high (fantastic animation skills!!)
- Causal linkages generally remain very weak
- Limits reliability of exposure calculations
- Exposure, effects, individuals, populations, ecosystems
 - The fishy side is the easiest to work on (but still difficult)
 - The feathery, furry side is more difficult (establishing effects thresholds, for example)

Research questions: Coastal Oil Spills

Wind, current, and coastal data

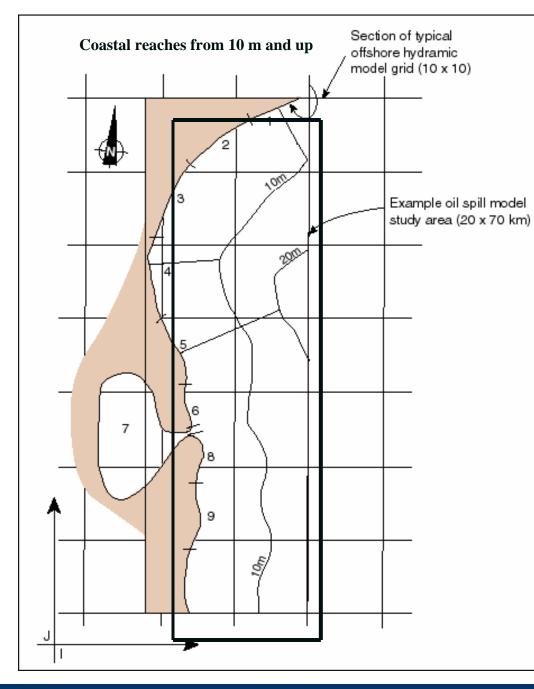

- Spatial resolution
- Topographical steering
- Sea breeze-land breeze
- Rivers and streams
- Shallow waters, coastlines, high turbidities
 - Oil-sediment interactions
 - Shorelines
 - Water column particles
 - Bottom sediments
 - Oil-ice-shoreline interactions

Oil ashore: we actually know a lot!

- Thousands of coastal spills
- Hundreds of papers
- Most oil spill models do not incorporate shoreline processes

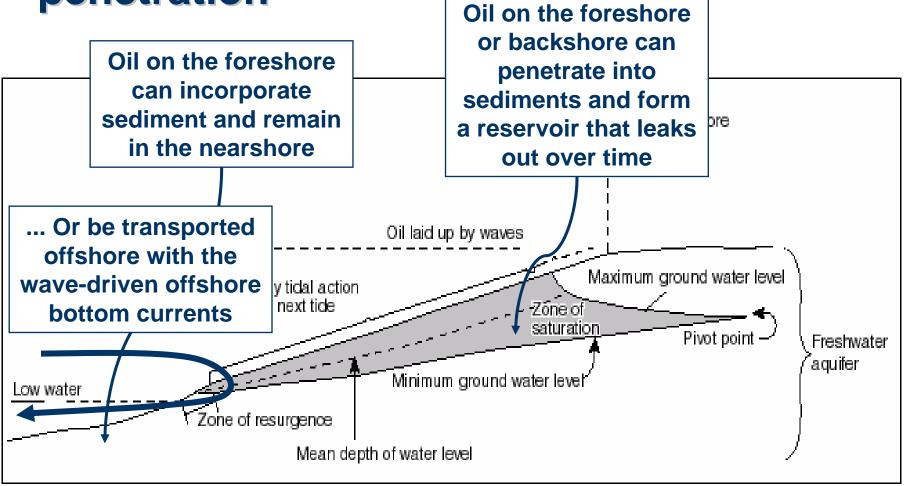
Cobbles before (A) and after (B) surf washing operations (scale provided by boot in upper right).

SINTEF

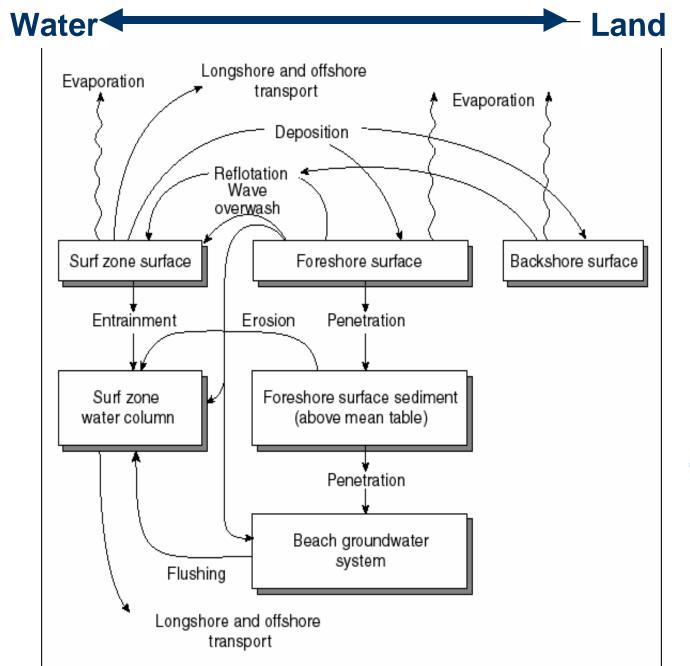

SERVER Oil Spill – IFO 180 - 02/2007 Norwegian Coast

Prestige Oil Spill, Spain

Materials and Chemistry



Generalized approach: representation of coastline by segments


- morphology
- sediment type
- exposure

Cross-section of a reach with porous sediment: schematic of water (and oil) penetration

Materials and Chemistry

Conceptual model of oil - shoreline interaction processes for each coastal segment

How many of all these details do we really NEED to include?

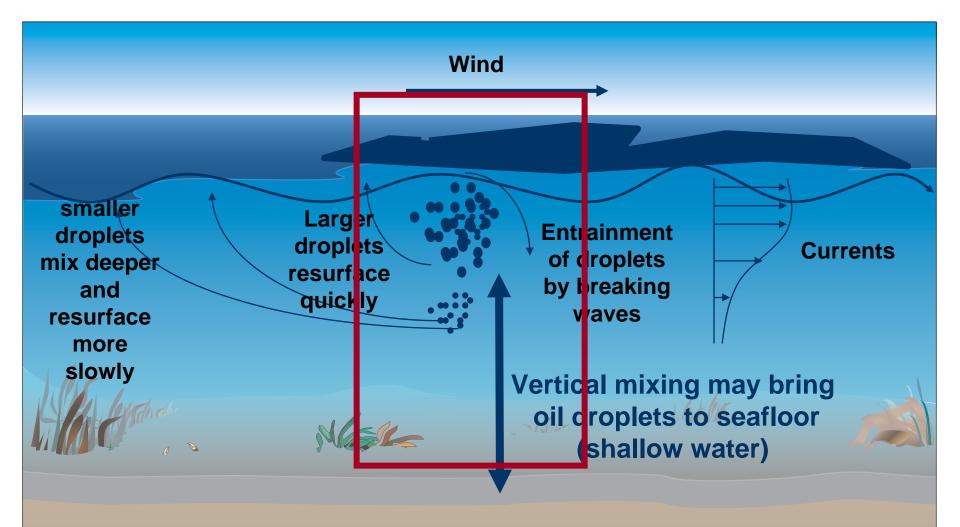
What are the key questions we want the model to answer?

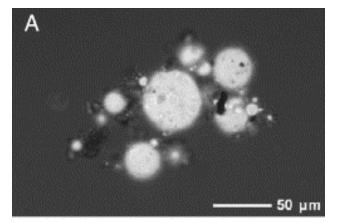
Among others:

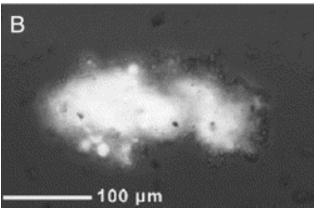
- How long will a coastal area be impacted with no intervention?
- What will be the natural removal rate?
- What happens to oil washed off the beach?
- What happens if we disperse the oil just before it comes ashore?
- In or apply other mechanical or chemical treatments on shore?
- Is this better or worse than dispersion offshore?

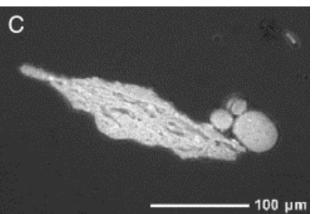
What's the minimum model we can build that will give us some reasonable answers?

Suggested minimum data needs for modeling oil-shoreline interactions

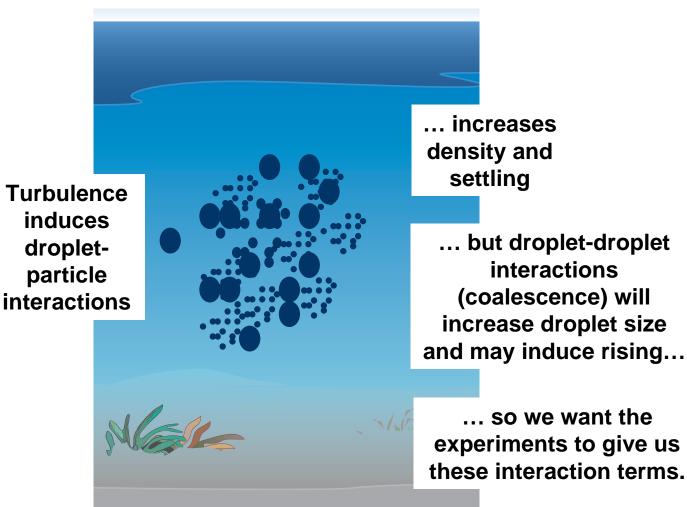

- 1. "Maximum holding capacity" (e.g. mass or thickness/unit area) as function of sediment type, oil type, and weathered state.
- 2. Natural removal rates (surface oil versus oil within sediments) as functions of the above parameters, plus degradation, wave and tidal exposure, placement on the beach.
- 3. Partitioning among surface, water column, and sediment compartments for oil washed off a beach.
- 4. Changes in these parameters for alternative response options in the coastal zone.




Water column transport processes for oil droplets



Interactions among droplets and suspended particulate matter in near-coastal waters



Interaction with fine clay particles contributes to sinking, and increased degradation rates

From Owens and Lee, 2003

Interactions among droplets and suspended particulate matter in near-coastal waters

Turbulent dispersion equation for an experimental setup

$$\frac{\delta C}{\delta t} = \vec{\nabla} \bullet D \vec{\nabla} C - (Loss_{sed} + Loss_{srf}) - Loss_{walls} + Q$$

We're interested in these terms.

 $\frac{\delta \delta}{\delta t}$ = local rate of change of hydrocarbon concentration

- $\vec{\nabla}$ = gradient operator = < $\delta / \delta x$, $\delta / \delta y$, $\delta / \delta z$ >
- D = turbulent dispersion coefficient (isotropic ?)

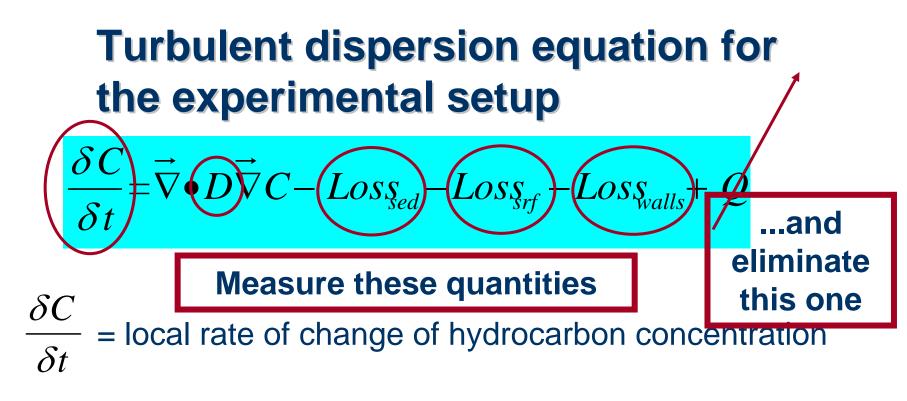
Losses are to sediments, re-surfacing, walls of experimental apparatus

Q represents sources of **C**, such as dispersion from surface slicks

Loss to sediments: fractional partitioning of oil droplets to sediments (each collision or inter-action)

$$F_{sorp} = \mathbf{K}_{p} C_{spm} F_{oil}$$

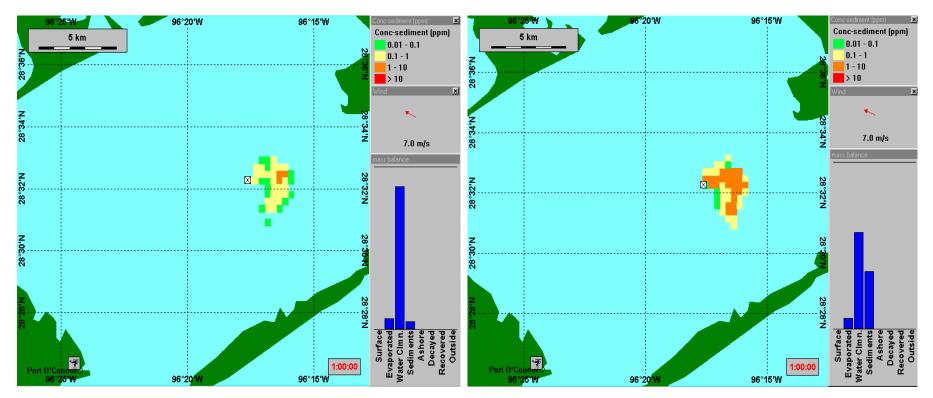
 $F_{sorp} / F_{oil} \sim$ probability of a sorptive interaction given a collision


•
$$F_{sorp}$$
 = fraction sorbed to particulate matter (water column, nepheloid layer, or bottom sediments

■ <i>K</i> _p	= sorption partition coefficient,	need K _p !
-------------------------	-----------------------------------	-----------------------

• F_{oil} = fraction of oil which does not sorb to particles on interaction

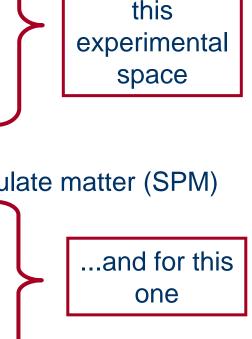
 $\square C_{s}$


- ∇ = gradient operator = < δ / δx , δ / δy , δ / δz >
- D = turbulent dispersion coefficient (isotropic ?)

Losses are to sediments, re-surfacing, walls of experimental apparatus

Q represents sources of **C**, such as dispersion from surface slicks

Modelling interactions of oil droplets with bottom sediments


Model sensitivity to sediment sorption coefficient in shallow water. Sorption parameter (K_p) increased by 10x in right hand picture.

(Modelling study for ExxonMobil; Reed, Johansen, Konkel et al, 2003; Env'l Modelling and Software)

Interactions of oil with water column and bottom sediments

- What determines the probability that an oil droplet that encounters bottom sediments will adhere?
 - Oil type
 - Weathered stage
 - Sediment characteristics
 - Application of dispersants
 - Turbulence level
 - …other factors?
 - Effects of dispersant application?
- What are <u>effective</u> oil droplet suspended particulate matter (SPM) interaction rates in the water column?
 - Turbulence
 - Droplet and SPM density (numbers per liter)
 - Oil and SPM characteristics

Need K_p for

