
### **CRRC Spill Modeling Summit**

State-of-the-Art for Spill Modeling
Future of Spill Modeling
Research Questions for Spill Modeling

Deborah French McCay Applied Science Associates, Inc. June 26, 2007

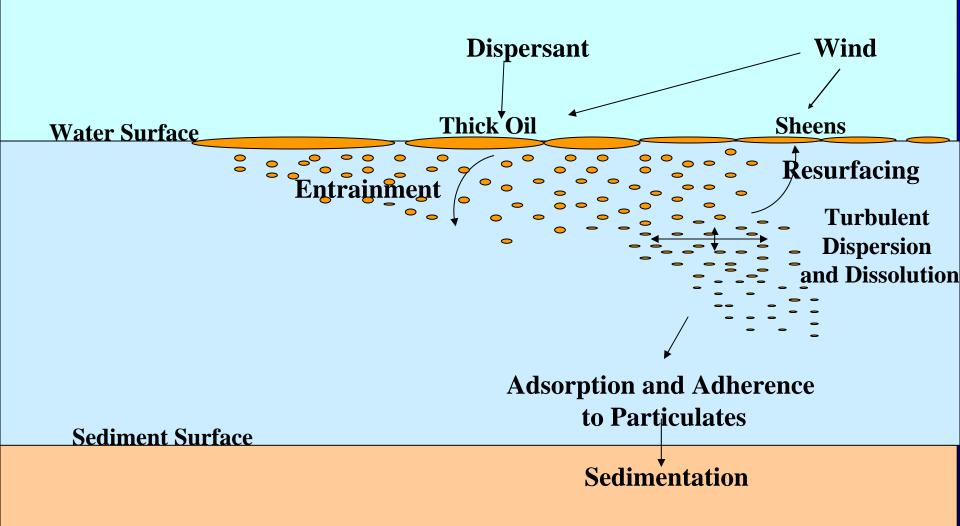
## **State-of-the-Art**



### References

#### • SIMAP (Oil)

- French McCay, D.P., 2002. Development and Application of an Oil Toxicity and Exposure Model, OilToxEx. Environmental Toxicology and Chemistry 21(10): 2080-2094.
- French McCay, D.P., 2003. Development and Application of Damage Assessment Modeling: Example Assessment for the North Cape Oil Spill. Marine Pollution Bulletin, Volume 47, Issues 9-12, September-December 2003, pp. 341-359.
- French McCay, D.P., 2004. Oil spill impact modeling: development and validation. Environmental Toxicology and Chemistry 23(10): 2441-2456.


#### • **CHEMMAP** (Chemicals)

- French McCay, D.P., 2001. Chemical Spill Model (CHEMMAP) for Forecasts/Hindcasts and Environmental Risk Assessment. In: Proceedings of the 24th Arctic and Marine Oilspill (AMOP) Technical Seminar, Edmonton, Alberta, Canada, June 12-14, 2001, Environment Canada, pp.825-846.
- French McCay, D.P. and Isaji, T., 2004. Evaluation of the consequences of chemical spills using modeling: chemicals used in deepwater oil and gas operations. Environmental Modelling & Software 19(7-8):629-644.
- French McCay, D., N. Whittier, M. Ward, and C. Santos, 2006. Spill hazard evaluation for chemicals shipped in bulk using modeling. Environmental Modelling & Software 21(2): 158-171.

## Oil and Chemical Spill Modeling State-of-the-Art for Physical Fates

- Lagrangian approach, allowing
  - Complex releases in space and time
  - Weathering, phase changes and chemical reactions
  - Hydrodynamics can be independent
- Three-dimensional necessary
  - Subsurface concentrations
  - Spreading and transport processes
  - 2D floating trajectory OK if no significant entrainment (light winds, floating oils and chemicals)
  - Primary uncertainty wind and current inputs
- Mixtures
  - Oil a mixture, handled as pseudo-components
  - Chemicals

State: pure, in solution, adsorbed to particles Mixtures, model each Chemistry: acid-base



#### **Buoyant Oils and Chemicals**

## Oil and Chemical Spill Modeling State-of-the-Art for Biological Effects

- Lagrangian approach, allowing
  - Simulation of behavior
    - Movements
    - Habitats used
  - Tracking of individuals
     Accumulation of dose
     Previous effects
- Model functional groups, rather than every species Potentially thousands of species, life stages Unknown and variable densities: inferences from volumes/areas/percentage of populations affected Use species densities if needed (NRDA)

### **Biological Exposure Model in SIMAP and CHEMMAP**

- Organisms classified by behavior
  - Wildlife
    - % of time on water surface Habitats used Feathers & fur
  - Fish and Invertebrates
     Swimming
     Drift with currents
     Stationary
- Movements of organisms are tracked to calculate exposure of individuals

- Impact a function of dose
  - Wildlife
    - Area swept by oil Oil thickness
  - Fish and Invertebrates Concentration Exposure time Temperature

# **Potential Effects of Oil**

- Smothering / Coating [Floating oil and chemicals]
  - Mechanical (smothering, prevention of uptake and depuration, interference with motility, etc.)
  - Thermal regulation (birds, mammals)
  - Absorption of toxic compounds (via skin or gut)
- Mechanical interference [Dispersed droplets]
  - Contact exposure
  - Clogging of feeding appendages and gills
  - Impeding movements
- Behavioral interference [Floating or dispersed droplets]
  - Avoidance (leave area or shut down)
  - Attraction (more exposure)
- Toxicity requires uptake into tissues

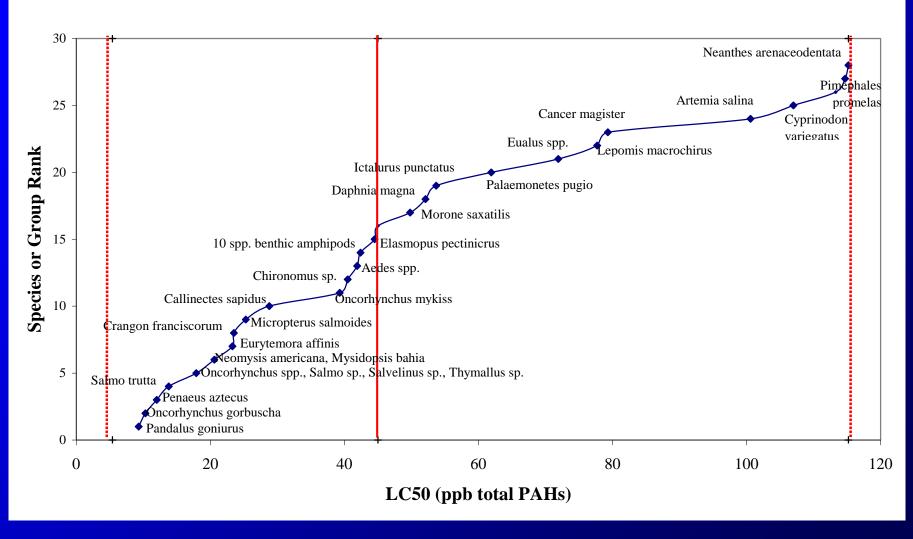
## **Effects Levels for Whole Oil**

- Smothering
  - Need effects threshold or dose-response curve based on mass per surface area
  - Dose-response data available for birds
- Mechanical interference
  - Need concentration threshold or dose-response curve
  - Little or no *quantitative* data
  - How relate to injury?
- Behavioral interference
  - Little or no *quantitative* data
  - Need to model behavior and change in exposure because of the avoidance/attraction

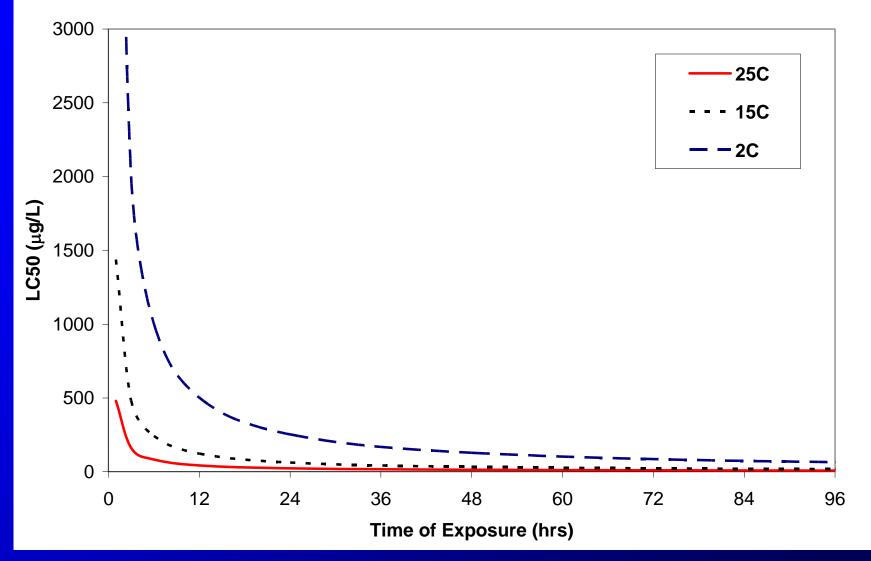
# **Potential Toxic Effects**

- Pathways involving uptake of hydrocarbons into tissues (membrane processes) → toxicity
  - Via gill and body surfaces (absorption)
  - In gut (assimilation)
  - From dissolved phase, originating from droplets adhering to external or internal surfaces
- Effects
  - Acute toxicity (first 2 weeks) Toxic Units approach well established

Additive effects all components


**Function of solubility** 

**1 to 3-ring aromatics most important (validated)** 


– Chronic (>2 weeks exposure) – on-going research

#### Acute Toxicity – Varies Greatly by Species

Species Sensitivity Ranking -- PAHs in Crudes and Fuel Oils Vertical Red Lines are Geometric Mean and Range for 95% of Species (French McCay, 2002)



#### Acute Toxicity = *f* ( Duration of Exposure and Temperature)



### Future of Spill Modeling Research Questions for Spill Modeling

# **Better Input Data**

- Winds
  - Real time measurements on line
  - Meso- and small-scale modeling
- Currents
  - Hydrodynamic modeling in real time, on-line products
  - Measurements in real time
     High frequency radar
     Satellite remote sensing
- Turbulent dispersion
  - Handled as random motion
  - Still high uncertainty

## More Accurate and Detailed Transport and Fate Algorithms

- Mixed layer processes
  - Langmuir circulation
  - Wind-induced currents
  - Stokes Drift from wave motions
  - Need a simplified algorithm, rather than solve time-varying computational fluid dynamics equations within oil fates and effects models
- Droplet processes
  - Droplet size distribution
  - Oil-particle interactions
- Shoreline processes
  - Related to viscosity, shore type, and exposre
  - Not so data intensive that can't be applied

## **Research for Biological Effects**

- Acute toxicity
  - Short term exposures
  - Variable exposure
  - Species sensitivities
- Chronic toxicity
  - Mechanisms
  - Effects levels
  - Species and life stage variability
- Biological distributions and behavior most uncertain model inputs
  - Density and patchiness
  - Basic population biology

## What is the Question?

- The approach and required accuracy depends on
  - The question being asked
  - The precision of the inputs
  - The urgency for the results
  - The level-of-effort the problem merits (or is allotted)
- Example: Type A model vs Type B site- and event-specific analysis

## **Format the Question**

- What are the Issues?
  - e.g., should dispersants be applied to floating oil?
- What is to be the basis of the decision?
  - -e.g.:

Effectiveness considering weathering and conditions

Trade-offs of dispersant use: water column vs wildlife and shorelines

- How soon do we need the answer?
- What is the required accuracy? Can it be a relative answer?
  - e.g., evaluate relative areas affected, rather than numbers or biomass impacted

## **Forecast / Hindcast / Probabilistic**

- Forecast needed for:
  - Where is the oil going?
  - How soon will it get there?
  - What might be impacted?
  - Most uncertainty
- Hindcast used for:
  - Impact assessment (biological, economic)
  - NRDA
  - Uncertainty handled with
    - Sensitivity analysis
    - **Additional research and analysis**
- Probabilistic
  - Appropriate approach for planning and risk assessment
  - Less focus on specific scenarios and details of certain environmental events
  - Statistics: mean/median, range, worst case
  - Can/should be used more

# **Needs for Real-Time Forecast Modeling**

- Transport
  - Winds
  - Currents
  - Entrainment
  - Dispersion
- Fates
  - Particle interactions
  - **Dissolution**
- Acute toxicity
- Biological Distributions

## **Focus of Hindcast Modeling**

#### • Fates

- Shoreline processes
- Degradation
- Biological
  - Exposure vis-à-vis behavior
  - Short term (acute) and chronic effects
  - Population response and recovery
  - Ecosystem level effects
- Economic
  - Response costs
  - Socioeconomic impacts

## **Use Probabilistic Modeling**

- Ecological risk analyses
  - Likelihood and potential range of impacts
- Cost-benefit analyses
- Spill response requirements/capacities
- Dispersant Decision Making
  - Worst case analysis
  - Potential areas and volumes affected

Less focus on using real-time and singlescenario (deterministic) modeling for such purposes

## **How Much Detail is Required?**

"It is not enough to be busy. So are the ants. The question is: What are we busy about?" Henry David Thoreau

- If we make a model more complex, is it in fact more accurate?
  - Depends on the certainty of the model inputs
  - More refined but less certain answer