Potential Environmental Impacts of an OTEC Facility

Effects Categories from NOAA's Final EIS in 1981

Major Effects

- Platform presence
 - Biota attraction
- Withdrawal of surface and deep ocean waters
 - Organism entrainment and impingement
- Discharge of waters
 - Nutrient redistribution resulting in increased productivity
- Biocide release
 - Organism toxic response

Effects Categories from NOAA's Final EIS in 1981 Minor Effects

- Protective hull-coating release
 - Concentration of trace metals in organism tissues
- Power cycle erosion and corrosion
 - Effect of trace constituent release
- Implantation of coldwater pipe and transmission cable
 - Habitat destruction and turbidity during dredging

Effects Categories from NOAA's Final EIS in 1981

Minor Effects(cont'd)

- Low-frequency sound production
 - Interference with marine life
- Discharge of surfactants
 - Organism toxic response
- Open-cycle plant operation
 - Alteration of oxygen and salt concentrations in downstream waters

Effects Categories from NOAA's Final EIS in 1981

Potential Effects from Accidents

- Potential working fluid release from spills and leaks
 - Organism toxic response
- Potential oil releases
 - Organism toxic response

Water Intakes Entrainment

- Warm water
 - Phytoplankton
 - Microzooplankton
 - Macrozooplankton
 - Some Adults
 - Eggs & Larvae
 - Benthos
 - Eggs & Larvae
 - Vertebrate Fish
 - Eggs & Larvae

- Cold water
 - Microzooplankton
 - Macrozooplankton
 - Some Adults
 - Eggs & Larvae
 - Benthos
 - Eggs & Larvae
 - Vertebrate Fish
 - Eggs & Larvae

Water Intakes Impingement

- Warm water
 - Macrozooplankton
 - Vertebrate Fish
 - Benthos?
 - Eggs & Larvae
 - Sea turtles
 - Hatchlings

- Cold water
 - Macrozooplankton
 - Benthos?
 - Eggs & Larvae
 - Vertebrate Fish

Impingement and Entrainment Estimates for 40 MW OTEC Facility

Parameter	Units	Warm Water Intake	Cold Water Intake
Depth	m	20	750-1000
Flow Rate	m3/s	120-200	120
Flow Velocities Outside of intake In pipe	m/s	0.25-0.30 1.5-2.5	1.5-2.5
Average Impingeable Biomass	mg/m3	2.1	3.8
Daily Biomass Impinged	kg live wt	20-35	40-65
Impingement mortality	percent	?	100
Zooplankton Entrained	kg C	20-34	2-4
Entrainable Phytoplankton (as Chlorophyll-a)	mg/m3	0.05-0.25	
Daily Phytoplankton Entrained (as Chlorophyll-a)	kg	0.5-4.3	
Entrainment mortality	percent	?	100

See Appendix D for larval density information and catch statistics

Figure 4-5. Equivalent Number and Commercial Value of Adult Amberjack (Seriola spp.) Lost as a Result of Ichthyoplankton Entrainment with Various Deployment Scenarios.

Comparison of Percent Commercial Catch Lost for Three Location Scenarios

Species	400 MW OTEC locations	% Hawaiian Commercial Catch Lost by Weight
Seliola spp. (amberjack)	3 off Kahe Pt	70
	3 off Waimea Bay	0
	3 around Oahu	30
Abudefduf abdominalis (sergeant major)	3 off Kahe Pt	670
	3 off Waimea Bay	30
	3 around Oahu	260
Thunnus albacores (yellowfin)	3 off Kahe Pt	10
	3 off Waimea Bay	0
	3 around Oahu	20

"These estimates of impingeable biomass are based on the assumption that larger organisms can detect and avoid the intake screens."

Cycle Water Release Characteristics

- Separate
 - Below ambient temperature
 - Corrosion products
 - Working fluid from leaks
 - Dead organisms
- Warm water
 - Antifouling chemicals
- Cold water
 - Increased nutrients and CO₂
 - Reduced pH
- Combined
 - All the above

Cycle Water Release Concerns

Secondary Entrainment

- Phytoplankton
- Microzooplankton
- Macrozooplankton
- Benthos
 - Eggs & Larvae
- Vertebrate Fish
 - Eggs & Larvae

Cycle Water Release Concerns

- Physico-Chemical Effects
 - Nutrient enrichment
 - Phytoplankton blooms
 - Increased productivity
 - Toxic alga blooms
 - Reduced shell formation
 - Current changes

Installation and Physical Presence

Component

- Transmission cables
 - Installation
 - Physical presence
- Anchoring system
 - Installation
 - Physical presence
- Platform
 - Installation
 - Physical presence
- Cold water pipe
 - Installation
 - Physical presence

- Destruction of benthic community
- Entanglement of marine mammals & sea turtles
- Destruction of benthic community
- Entanglement of marine mammals & sea turtles
- Change benthic substrate
- Noise, chemical releases
- Fish attractant, toxic releases

Noise and Electromagnetic Fields

Noise

- Source
 - Pumps & generators
 - Water movement through cold water pipe
 - Discharge turbulence
- Impact
 - Disrupt marine mammal behavior

EMF

- Source
 - Transmission cable
- Impact
 - Disrupt marine mammal and vertebrate fish behavior