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Outline
• Toxicity assessment of single hydrocarbons to aquatic/marine life

– Target lipid model

• Methods for testing complex hydrocarbons, e.g. crude oil
– Water Accomodated Fraction (WAF) test procedure

• Tools for predicting toxicity
– Additive toxic unit model
– Biomimetic extraction analysis

• Influence of chemical dispersants on oil toxicity

• Additional issues
– Photo-enhanced toxicity
– Bioaccumulation of PAHs in foodchain

• Summary & research needs
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Narcosis
• Non-specific, perturbation of membrane function that results in 

decreased activity (e.g. ventillation, oxygen consumption, heart rate), 
immobilization and ultimately death to organisms

• Applicable to many classes of chemicals including hydrocarbons
– Minimum level or “baseline” toxicity independent of exposure route
– Shown to correlate with substance hydrophobicity until toxicity “cut-off”
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Inhibition of Mussel Filtration Rate
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Predicting Narcosis using 
the Target Lipid Model
CTLBB for a chemical is determined as:

CTLBB = LC50 x KTL-W (1)

Rearranging and taking logs:
log(EC50) = log(CTLBB) - log(KTL-W)         (2)

Based on linear-free energy relationships:
log(KTL-W) = ao + a1 log(Kow)                      (3)

Substituting (3) into (2) yields:
log(EC50) = log(CTLBB) - ao - a1 log(Kow)                 (4)

CTLBB = critical target lipid body burden (mmol/kg octanol)
EC50 = aqueous concentration that causes a 50% response (mmol/L)
KTL-W = target lipid water partition coefficient (L/kg lipid)
Kow = octanol water partition coefficient (L/kg octanol)
ao ,a1 = emprical constants that relate partitioning at target site to octanol

Response Organism Hydrocarbon
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Calibration of TLM using 
Acute Toxicity Data Sets

shrimp fish insect fish
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Source:  DiToro, McGrath, & Hansen (2000) ET&C 19:1951–1970.
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Results of TLM calibration
• Quantitative relationships developed for 56 species

– amphibians, fish, invertebrates, algae, microbes / aquatic & marine
– ca. 1000 reliable acute toxicity tests for 250+ chemicals

+ aliphatic hydrocarbons, alcohols, ethers, ketones, mono-, and poly-
aromatic hydrocarbons including halogenated structures than span a 
log(KOW) range from 0 to 6

• ao chemical class dependent
– ao = 0 for most HCs (baseline); = 0.35 for PAHs (2X potency)
– attributed to polar interactions that increase affinity for target site

• a1 constant across narcotic chemicals!
– a1 = 0.936

• Intercept [log (CTLBB)] is species-dependent
– used to define species-sensitivity distribution (next slide)

Source:  McGrath & DiToro (2009) ET&C28:1130



8

CTLBB Species -
Sensitivity Distribution

Species vary in sensitivity by 20-fold

Source: McGrath & DiToro (2009) ET&C 28:1130
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Extrapolation to Chronic Effects

Source: 
McGrath & DiToro
(2009) ET&C 28:1130

Acute to Chronic Ratio
ACR =

acute L/EC50
÷

chronic NOEC/EC10

For hydrocarbons     
ACRs vary 10-fold
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Derivation of Water Quality Criteria
• Final Chronic Value (mmol/L) is given by:

log (FCV) = log(CTLBB5th) – 0.936 log(Kow) – a0 – log (GMACR)
CTLBB5th = 5th percentile of CTLBB species-sensitivity distribution
GMACR = Geometric Mean Acute to Chronic Ratio

Source:
DiToro et al. (2007) 
ET&C 26:24
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Testing Complex Substances
• Water Accomodated Fraction (WAF): An aqueous medium containing 

the fraction of the petroleum product that remains in the aqueous phase 
once mixing is terminated and phase separation has occurred

– WAF = soluble phase (dissolved fraction) + droplets (colloidal fraction)
– WAFs are prepared at multiple oil-water ratios (i.e. Loadings)
– Test method described by OECD guidance document

+ http://www.epa.gov/endo/pubs/ref-2_oecd_gd23_difficult_substances.pdf

• Practical Considerations:
– How to add the test substance to dilution water?
– How to mix?
– How long to equilibrate?
– How long for phase separation after mixing?
– How to sample WAFs for testing?
– How to expose test organisms and express test results?
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Outline of WAF Test Procedure
• Add a measured volume (liquids) or weight (solids) of substance to known 

volume of water in a sealed test vessel 
– Contains 5-10% headspace to allow mixing & includes Teflon coated stir-bar
– Equipped with port at bottom for sampling WAFs with low density (floating) or 

glass siphon tube in middle for sampling high density (sinking) products

• Stir oil-water solution on magnetic stir plate at a rate that provides good 
mixing but prevents emulsion formation

– Use mixing rate that creates < 10% vortex of static depth of oil-water solution
– Typically stir at room temperature (22 ± 2 °C)

• Continue mixing until equilibrium is obtained
– Take periodic samples for chemical analysis

+ TOC, Solvent extraction coupled with UV Spectroscopy/GC-FID or MS
+ Solid phase microextraction (SPME) coupled with GC-FID or MS

– 48-96 hrs generally sufficient for most complex petroleum substances
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WAF Preparation of Liquids
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WAF Vessel / Mixing

Air

Water

Oil
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Preparation of WAFs
for Toxicity Testing

WAF Preparation

4 3 2 1

Loadings (Exposure Treatments)

4 3 2 1
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Aqueous Solubility Behavior

Single Hydrocarbon Multi-Component Oil
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SPME Fiber Chromatograms
for Crude Oil WAFs
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Outline of WAF Test (Cont’d)
• Stop mixing / allow phase separation

– Typically allow 1 hour unless adjustment to 
different temperature required (e.g. trout 
studies) which may require longer periods

• Withdraw solution from WAF test system
– Discard first 100 mls
– Collect sample for toxicity testing by directly 

transferring WAF via gravity flow to air tight 
exposure vessels to which test organisms 
are introduced

– Need to consider oxygen depletion 
concerns especially for fish

+ Use static renewal exposure design
+ Add pure oxygen

– Need to consider pH changes for algae
+ Increase buffering capacity of test media

• Observe test organism response to WAFs
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Chemical Disperants
• Designed to exhibit low aquatic toxicity

– Less toxic than the oil to be dispersed
• Increases amount of oil in aqueous test media

– Augments “effective” loading potentially increasing dissolved or 
‘bioavailable” hydrocarbon concentrations 

– Increases undissolved hydrocarbon, i.e. droplets

Physical 
Mixing

+ Chemical 
Dispersant
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SPME Chromatogram Comparison 
for Physical & Chemical Dispersion
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Other Approaches
• Use of Water Soluble Fractions (WSF)

– Filter WAF to remove undissolved oil
+ Potential for removal of dissolved constituent
+ Adds significant effort to test
+ Can be used to investigate role of physical effects associated with highly 

dispersed WAFs

• Use of WAF / WSF dilutions
– Prepare WAF / WSF at a given loading (e.g. 10 g oil /L water)
– Make serial dilutions of the WAF / WSF
– Exposure test organisms to WAF / WSF dilutions
– Express toxicity in terms of % dilution
– Traditionally used in oil spill studies

Cautionary Note:  A 1:100 dilution of a 10g/L WAF ≠ 100 mg/L WAF
since amount and composition of hydrocarbons will differ
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Tools for Predicting Toxicity
• Additive Toxic Unit Model

– Given detailed composition of oil simulate composition of aqueous 
hydrocarbons in WAF test system

– Use TLM to calculate species-specific toxicity to all predicted 
hydrocarbons in WAF

– Calculate additive contribution of each hydrocarbon to toxicity

*
,

,
i

TU

iw
C

iw
C

= and ∑
=

=
n

i 1
i

TUTUTotal

where:
Cw,i = aqueous concentration of hydrocarbon i predicted in WAF
Cw,i

* = aqueous effect concentration (e.g., LC50) of hydrocarbon i

TU < 0.3            Toxicity Unlikely

0.3< TU <2.0    Toxicity Uncertain

TU > 2.0             Toxicity Likely
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Overview of PETROTOX Model
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Use of TLM to Predict Acute 
Toxicity of Gasolines

Source:
McGrath et al. (2005) 
ET&C 24:2382–2394

algae ‐ P. subcapita

invertebrate – D. magna 

fish – O. mykiss
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Tools for Predicting Toxicity (Cont’d)
• Biomimetic Extraction Analysis:

– Ecotoxicity occurs when {molar} in organism lipid exceeds a critical 
threshold, i.e., CTLBB

– For given organism / endpoint, CTLBB is ~ constant for different 
hydrocarbons which act by a common mode of action

– Ecotoxicity of hydrocarbon mixtures is additive i.e., CTLBB concept 
applies to complex petroleum products

– SPME fibers serve as a surrogate for organism target lipid

– Total amount of hydrocarbons that sorb from a petroleum contaminated 
sample (e.g. WAF) to SPME fiber used for quantitative toxicity prediction
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Mysid Toxicity Case Study
• Prepare physically and chemically dispersed WAFs

– Five crude oils, no. 2 fuel oil
– Two dispersants
– Multiple oil loadings

• Measure SPME fiber concentrations associated with each WAF
– Equilibrate fiber in WAF for 24 hrs
– Inject fiber into GC/FID
– Quantitate using molar response of C2-naphthalene
– Express results as umol/ml PDMS = mM PDMS

• Determine 48-hr acute toxicity using Mysidopsis bahia
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Mysid Toxicity vs Oil Loading
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• Toxicity highly variable across treatments
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Mysid Toxicity vs CFiber
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• Clear dose-response across treatments; dispersed oil not different
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Further Validation Efforts
• Prepare WAFs using no. 2 fuel oil at different loadings
• Determine CFiber and toxicity for different test species
• Use CFiber – toxicity responses to estimate critical fiber burdens (CFBs)
• Translate CFBs into CTLBBs given KTL-W / KPDMS-W ~ 8
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Photo-Enhanced Toxicity
• Selected PAHs shown to be more toxic in lab in presence of UV light 

• Toxicity predicted by product of UV intensity and PAH tissue residue
– UV intensity depends on location, season, time of day, water clarity; 

decreases exponentially with water depth
– PAH tissue residue depends on PAH exposure concs and organism

• Influence of UV light on PAH toxicity offset by photodegradation
– Estimated aqueous photolysis half-life for anthracene ca. minutes to days

Mount et al., (2001) 
Linking exposure and 
dosimetry to risk from 
photo-activated toxicity of 
PAHs. Presented at the 
2001 Annual SETAC
Meeting. Baltimore, MD.
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Bioaccumation of PAHs
in Foodchain
• Selected PAHs known to be carcinogenic/mutagenic, e.g.  

benzo(a)pyrene, dibenz(a,h,)anthracene, chrysene

• Bioconcentration at base of foodweb limited by dissolved PAH concs.

• Subsequent transfer to higher organisms mitigated by 
biotransformation processes

– PAHs shown to biodilute, not biomagnify in foodweb
+ Lab Biomagnification Factors (BMFs)

+ Field Trophic Magnification Factors (TMFs)
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Lab Dietary Bioaccumulation Test
• Spike hydrocarbons to commercial fish diet 

– Lipid content of diet 15%
– Spike liquids directly, solids in corn oil

• Confirm dietary concentrations analytically

• Feed 3% ration of spiked diet to trout or carp 
(1-5 grams; 2-4% lipid) for 7 to 10 days (uptake)

• Transfer exposed fish to clean food (depuration)

• Analyze fish at different depuration times
e.g. 0, 1, 3, 7, 14, 21 days

• Use hexachlorobenzene as positive control

thaw add KOH digest

expose trout via diet

analyze trout tissues
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Bioaccumulation Data Analysis
• Use experimental depuration data to deduce:

– Growth-corrected half-life (t1/2)
+ Derived from slope of depuration plot & fish growth rate

– Assimilation efficiency from diet (α)
+ Derived from intercept of depuration plot & first-order model

– Biomagnification factor (BMF)

fish

diet1/2diet

lipid diet,

lipid fish,

L
L

693.0
tI

C
C α

==BMF

BMF < 1 Trophic Dilution

BMF = 1               Equilibrium Partitioning

BMF > 1            Biomagnification
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Trout BMFs
for Aromatic Hydrocarbons

PCB data from Fisk et al. 1988 ET&C 17:951
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Field Bioaccumulation Assessment
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• Collect field organisms from foodweb: analyse tissues for chemical and 
nitrogen isotopes

– nitrogen isotopes used to determine trophic level (TL)
• Regress chemical concentration against TL to determine trophic
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Literature TMFs for PAHs
PAH TMF 

Ref =1 
TMF 

Ref =2 
TMF 

Ref =3  
benz[a]anthracene 0.20 0.75 0.83 

benzo[a]pyrene 0.24 0.75 0.80 
benzo[e]pyrene 0.25 0.86 0.57 

benzofluoranthene 0.27 0.84 0.69 
benzo[ghi]perylene 0.66 0.75 0.72 

chrysene 0.26 0.66 0.65 
fluoranthene 0.11 0.72 0.60 

indeno-123-cd]pyrene 0.81 0.75 0.80 
dibenz[ah]anthracene 0.85   

perylene 0.24 0.67 0.77 
phenanthrene 0.43 0.82 0.75 

pyrene 0.17 0.74 0.62 
 

Ref =1 Wan Y, Jin X, Hu J, Jin F. (2007). Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) 
in a marine food web from Bohai Bay, North China. Environ Sci Technol 41:3109‐3114.
Ref =2 Nfon, E., Cousins, I.T., et al. (2008). Biomagnification of organic pollutants in benthic and pelagic 
marine food chains from the Baltic Sea. Sci Total Environ 397:190‐204.
Ref =3 Takeuchi, I., Miyoshi, N., et al. (2009). Biomagnification profiles of polycyclic aromatic hydrocarbons, 
alkylphenols and polychlorinated biphenyls in Tokyo Bay elucidated by d13C and d 15N isotope ratios as 
guides to trophic web structure. Mar Poll Bull 58:663‐671.
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Summary
• The target lipid model provides a quantitative framework for predicting the acute 

and chronic toxicity of single and complex hydrocarbons

• The WAF test procedure is the preferred test method for assessing the aquatic 
toxicity of complex petroleum substances 

– method endorsed by OECD
– accounts for multi-component dissolution behavior

• Passive sampling methods (e.g. SPME fibers) that quantify dissolved 
hydrocarbons in WAFs provide simple analytical tool to support testing and 
toxicity prediction

• Chemical dispersants exhibit low toxicity but can increase the bioavailability of 
hydrocarbons in the oil being dispersed

– can result in increased WAF toxicity in lab studies
– offset by role bioavailability plays in reducing field exposures, e.g. dilution, 

biodegradation

• Photo-enhanced toxicity and bioaccumulation in foodweb depends on dissolved 
PAH concentrations in the field; significance further limited by:

– UV attenuation in water column and photodegradation
– biodilution in the foodchain
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Research Needs ?
• Develop reliable CTLBBs and ACRs for additional GOM

species, e.g sponges, corals for which limited data are available

• Develop data and improved models for characterizing toxicity of 
aromatic hydrocarbons on survival, growth and reproduction of 
key GOM species under time-variable exposure and field 
conditions, e.g. temperature, UV light, oxygen

• Link toxicity and population models to predict population-level 
responses

• Further investigate analytical and short-term toxicity screening 
tests for use in future spill response
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