Oil on Troubled Waters: Response and Outlook for Recovery in the Gulf of Mexico

Nancy E. Kinner
Coastal Response Research Center
University of New Hampshire

August 14, 2010
Georgetown, ME Historical Society
Uses of Petroleum

% Consumption

- Transportation = 67%
- Residential/Commercial = 6%
- Industrial = 25%
- Electric Utilities = 2%
U.S. Fuel Consumption

- Energy Needs → Natural Gas + Oil = 62%
- Transportation → Natural Gas + Oil = 100%
- Need is Growing
- U.S. Demand > 3x U.S. Production
 - Foreign Sources
 - Foreign Supply = Transportation = Oil Spill Potential
Sources of Oil

(Source: NAS, 2003)
Natural Seeps

- Large Input
- Ecological Impacts Limited
- Slow Release
- Biota Acclimated
Marine Oil Spills

- Tankers: Trend is Decreasing
 - Double Hulls
- Tailor Response to Spill
- Natural Disasters Increasing Impact
 - Damage to off-shore platforms/rigs and pipelines
- Increasing Drilling and Arctic Transport
Southern Louisiana and Gulf of Mexico Oil Wells and Pipelines

- Red dots = on-shore wells
- Brown dots = off-shore wells
- 63,000 miles of pipeline links wells to refineries
Coastal Response Research Center
Crude Oil

- Hydrocarbon Mixture
 - 4+ Carbons + H (97% of Oil)
 - Straight, Branched + Cyclic Chains (C-C) (>90% of Crude)
 - Aromatics (1+Rings – C=C) (1-2% of Crude)
 - Multiple Rings = PAHs (0.2-7% of Crude)
 - Carcinogens

- Other Contents (3%)
 - S, N, O, Vn, Ni, Cr

- Composition of Crude Varies with Source
Crude Oil Characteristics

- Viscosity
 - Fewer C’s & More C-C Bonds = Less Viscose
- Density 0.7-0.99 g/cm³
 - H₂O = 1.0 g/cm³
 - Floats on H₂O
 - Some Sinking Oils
- Solubility ≤ 100 ppm
 - Water Soluble Fractions (WSF) = Toxicity
Refining Crude Oil

<table>
<thead>
<tr>
<th>Product</th>
<th>#C</th>
<th>BP (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas</td>
<td>3 - 4</td>
<td>30</td>
</tr>
<tr>
<td>Gasoline</td>
<td>4 - 6</td>
<td>30 - 140</td>
</tr>
<tr>
<td>Kerosene</td>
<td>10 - 14</td>
<td>165 - 200</td>
</tr>
<tr>
<td>Diesel</td>
<td>15 - 20</td>
<td>175 - 365</td>
</tr>
<tr>
<td>Fuel Residuals*</td>
<td>20+</td>
<td>> 350</td>
</tr>
</tbody>
</table>

* Asphalt, Bunker, No. 6 Fuels
Crude in Environment (Weathering)

- Most Extraction and Transportation is Crude Oil
- Fate of Oil Release = Weathering
- Function of Environmental Conditions
 - Temperature (H₂O, Air)
 - Wind
 - Oil Type
 - Currents, Tides
Fate of Oil

- Evaporation
 - Volatiles = Few C’s
- Dissolution
 - More Soluble = Few C’s
- Photochemical Oxidation
 - (UV-Sun)
- Emulsification (Mousse)
- Transport
 - Vertical or Horizontal
- Sedimentation
- Stranding (Shorelines)
- Tarballs
- Biodegradation
- Ingestion
Biological Impacts

- Partitioning to Sediments and Water Column
- Bioavailability
 - Gills, Membranes, Particle Ingestion
- Bioaccumulation = Concentrated Up Food Chain
- Shoreline Stranding
- Tarballs
- Ice (In, On, Under Ice + Snow)
Biological Effects

- **Acute Release** – Large Releases, High Concentrations → Severe Impact on Health/Lethal
- **Chronic Release** – Small Amounts Released Over Long Time
- **Lethal Effects** – Death
- **Chronic (Sublethal) Effects** – Impairment of Functions/Activities
 - e.g., Impaired Growth and Reproduction
Biological Questions:

1. What Are the Biological Effects of the Spill?
2. When Has Complete Recovery Occurred (If Ever)?
3. Is Recovery to Pre-Spill Community?
4. How Clean Is Clean Enough?

All Compared to Natural Variation
Perturbation (e.g., oil spill) Normal Variability

of Individuals

Recovery

Spill Impact

(Source: NAS, 2003)
Issues in Assessing Biological Impacts

- Oil vs. Other Anthropogenic Impacts
 - What is Pristine?
 - Most Spills in Urban/Developed Coastal/Estuarine Environments
- Ideal = Before vs. After, Control vs. Impact (BACI) Observations
 - Multiple Sites (Spatial Gradient)
 - Multiple Times (Time Series)
Factors Affecting Toxicity

- Type of Hydrocarbons
- Concentration of Hydrocarbons
- Length of Exposure
- Ability of Organisms to Accumulate/Metabolize Hydrocarbons
- Fate of Metabolized Products
- Interference with Normal Metabolism
- Narcotic Effects on Nerve Transmission
Hydrocarbon Toxicity

- Volatiles Worst
 - Water Soluble, Move Easily Across Membranes into Cells
 - But Rapidly Lost Due to Evaporation
- PAHs
 - Persistent in Environment
 - Carcinogenic
Key Biota in DWH Spill

- Coral
- Oysters
- Shrimp
- Crabs
- Blue Fin Tuna
- Intertidal/Marsh Vegetation (Marsh as Nursery Grounds)
- Biota That Cannot Swim Away Are Most Impacted
Oil Spill Response in U.S.

- OPA (Oil Pollution Act) 1990
 - Federal/Congressional Response to Exxon Valdez in 1989
 - National Contingency Planning by Government and Industry (NCP)
 - Federal Gov’t Directs All Public/Private Response Efforts
 - Area Committees (State, Fed, Local Gov’t) Develop Detailed Location Specific Plans
 - Owners/Operators of Vessels, Platforms and Facilities Prepare Response Plans
Oil Spill Liability Trust Fund (OSLTF)

- Owner/Operator Is Liable for Cleanup and Damages (For DWH = $75M)
- If Source Unknown, OSLTF Covers Costs
 - Revenue Source = Fees on Oil
- Fund Provides $1B/incident
- Administered by U.S. Coast Guard
- National Pollution Funds Center (NPFC)
National Response Center

- U.S. Coast Guard
- On Duty 24 hr/7d
- Receives Report of Spill
- Activates National Contingency Plan/Federal Role
- Notifies On-Scene Coordinator (OSC)
On Scene Coordinator

- Federal Official Responsible for Monitoring + Directing Spill Response
 - Coordinate With All Federal, State, Regional and Local Parties
 - USCG (Coastal + Great Lakes)
 - EPA (Inland)
- Direct Activities If:
 - Source Unknown
 - Spill Beyond Owner/Operator Abilities
 - Spill Substantial Threat to Public Health/Welfare
Steps in Response

1. Assessment
2. Monitoring
3. Response Assistance
4. Evaluation
Assessment

- Size/Nature of Spill’s Potential Hazards
- Resources Needed to Contain and Cleanup
- Ability of Responsible Party (RP) to Handle/Cleanup
Monitoring

- Most Spills Are Small & Handled by RP or Local Response Agencies
- Monitoring Ensures Actions of RP Are Appropriate and Working
Response Assistance

- If OSC Determines Federal Assistance Needed
 - Obtains Personnel + Equipment Needed
 - Determines Who Pays
Evaluation

- After Response, OSC Files Report on Spill + Actions
- Identifies Problems + Successes
- Makes Recommendations for Improvements
National Response Team (NRT)

- Plan and Train for Emergencies, Distribute Response Information
- Interagency Group
 - USCG
 - FEMA
 - DoD
 - DOE
 - USDA – Inland
 - NOAA (Natural Resource Trustee)
 - HHS (Health)
 - DOI (Fish/Birds and Inland)
 - DOJ
 - DOT
 - DOL
 - NRC
 - Treasury
 - GSA
Regional Response Teams (RRT)

- 13 in U.S. (Geographic Regions)
- Respond to OSC with Technical Advice, Equipment, Personnel
- Develop Regional Contingency Plan So Roles Clear During Spill
- Training/Simulation
- Coordination Among States Within Region
Spill of National Significance (SONS)

- SONS is rare catastrophic spill which exceeds response capabilities of local and regional teams

- Possible criteria:
 - Multiple response regions or nations affected
 - Significant and widespread public health, welfare, environment, or economic impacts
 - Protracted discharge or cleanup period
 - Significant public concern and demand for action
 - Actual or potential high level of political or media interest

DWH was SONS!!!!!
Response Selection

- When: How Recently Did Spill Occur?
- Where is Spill?
 - Bay, Estuary…
 - Beach, Salt Marsh…
- Type of Oil + Condition
- Volume Spilled
- Weather Conditions
 - Personnel Safety
 - Effectiveness of Response Equipment
- Resources to Protect
Drivers of Response Selection

- **Current**
 - Habitat(s) Impacted
 - Natural Resources Impacted

- **Future**
 - Economics
 - Stakeholders Views (Pre-Spill Involvement)
 - Performance Metrics (Quantitative vs. Qualitative)
Common Responses

- Tracking
- Sorbents
- In Situ Burning
- Booms
- Dispersants
- Surface Washing

- Natural Attenuation
- Bioremediation

National Contingency Plan Product List (EPA)
Common Responses

- Tracking: Allow Natural Weathering Processes to Clean-Up Oil
Common Responses

- **Sorbents: Materials Applied to Oil on Surface that Absorb the Oil**
 - e.g., Poly-plastics, Straw
 - Materials Removed from Surface After Oil Is Sorbed to Them
 - Disposed by Burning or in Landfills
Common Responses

- Booms: Capture Oil or Deflect It from Critical Area
Common Responses

- Tracking
- Sorbents

- **In Situ Burning**
 - Booms
 - Dispersants
 - Surface Washing

- Natural Attenuation
- Bioremediation

National Contingency Plan Product List (EPA)
Common Responses

- Tracking
- Sorbents
- In Situ Burning
- Booms
- Dispersants
- Surface Washing

- Natural Attenuation
- Bioremediation

National Contingency Plan Product List (EPA)
Common Responses

- Tracking
- Sorbents
- In Situ Burning
- Booms
- Dispersants
- Surface Washing
- Natural Attenuation
- Bioremediation

National Contingency Plan Product List (EPA)
CRRC Website:
www.crrc.unh.edu