Guidance for Dispersant Decision Making: Potential for Impacts on Aquatic Biota

Principal Investigator: Deborah French-McCay, PhD
Applied Science Associates
Acknowledgement

Funding for this project is provided by the Coastal Response Research Center

www.crrc.unh.edu
Problem Statement

• Biologically/Ecologically-Driven Spill Response: Trade-off response decisions based on expected level of resource injury

Use of chemical dispersants

Quantify tradeoff
Investigative Approach

• Use oil fate and biological exposure modeling to quantify impacts
• Provide quantitative guidance for response decision makers
• Oil Spill Impact Guide (OSIG)
 • water volume adversely affected by dispersed oil and dissolved hydrocarbons
 • surface area impacted by floating oil
 • typical animal densities in shelf areas of US
Toxic Components of Oil (Additive Effects)

Aliphatics = (e.g., alkanes) - more volatile than soluble

Monoaromatic Hydrocarbons (MAHs)
- Benzene, Toluene, Ethylbenzene and Xylenes = BTEX - highly soluble, highly volatile, moderately toxic
- Alkyl-substituted Benzenes - soluble, less volatile, more toxic

Polynuclear Aromatic Hydrocarbons (PAHs)
- Naphthalenes (2-ring PAHs)
 - soluble, less volatile, more toxic
 - with more alkyl chains, less soluble but more toxic
- 3 ring PAHs: Phenanthrenes, Fluorenes, Dibenzothiophenes
- 4-ring PAHs - parent compounds bioavailable
- larger PAHs insoluble
Important Oil Fate Processes

- Water Surface
- Thick Oil
- Sediment Surface
- Sedimentation
- Entrainment
- Dispersant
- Wind
- Sheens
- Resurfacing
- Turbulent Dispersion and Dissolution
- Adsorption and Adherence to Particulates

Coastal Response Research Center
Biological Exposure Model

Organisms classified by behavior
- Wildlife
 - % of time on water surface
 - Habitats used
 - Feathers & fur
- Fish and Invertebrates
 - Swimming
 - Drift with currents
 - Stationary

Movements of organisms are tracked to calculate exposure of individuals

Impact a function of dose
- Wildlife
 - Area swept
 - Slick thickness
- Fish and Invertebrates
 - Σ PAH Concentration (water, sediment pore water)
 - Exposure time
 - Temperature
Validation - Wildlife

Exxon Valdez (Prince William Sound)

- **Total Birds**
- **eagles**
- **murrels**
- **puffins**
- **guillemots**
- **murrelets**
- **other alcids**
- **gulls**
- **cormorants**
- **procellariids**
- **sea ducks**
- **grebes**
- **loons**

log10 (# killed)

Model

Field
Validation - Fish and Invertebrate Toxicity

- Oil bioassays
 (French McCay, 2002; Envir. Tox & Chem Vol. 10)
 - 24 data sets (2 to 91 species tested)
 - For all data sets: model not significantly different from observed

- North Cape Oil Spill (RI, Jan 1996):
 - Lobsters
 - Field estimate 9 million
 - Model estimate 8.3 million
 - (using best estimate of toxicity)
 - Strandings on beaches: 3 million

Coastal Response Research Center
Species Sensitivity Ranking -- PAHs in Crudes and Fuel Oils
Vertical Red Lines are Geometric Mean and Range for 95% of Species
(French McCay, 2002)

LC50 for >96hrs Exposure Time

Coastal Response Research Center
Biological Impacts: Equivalent Areas of 100% Loss

Wildlife
(Birds primarily)

Area swept by oil >10 \(\mu m \) thick multiplied by probability of encounter with water surface:

\[
\text{[Area Swept]} \times \text{[Probability]}
\]

Water Column
(Plankton)

Weighted sum of volumes affected at \(\lambda \)% loss:

\[
\sum \left[\text{Volume} \times \frac{\lambda}{100} \right]
\]

Divide by mixed layer depth to calculate area affected
Previously Modeled Scenarios

- Hypothetical spills in open water
- Restricted to surface mixed layer: 10m, 20m
- Light Arabian crude
- Oil volume:
 - maximum volume of oil treated by a single sortie of a C-130 (100,000 gal = 326.3 MT = 378 m³, 20:1 oil:dispersant)
 - 80% efficiency
- Dispersant application scenarios:
 - No dispersant applied
 - Dispersant applied after weathered 8 or 16 hrs
- Wind speeds and associated turbulence conditions
 - 5 kts (2.5 m/s), 1 m²/s
 - 15 kts (7.5 m/s), 10 m²/s
- Background currents:
 - none
 - 0.25 kts (13 cm/s) downwind
 - 0.25 kts (13 cm/s) upwind
Summary of Impacts - Area (km²)

Worst Case: 80% of 100,000 gal dispersed; no currents, 10m mixed depth

<table>
<thead>
<tr>
<th>Wind Speed</th>
<th>No Dispersant</th>
<th>With Dispersant</th>
</tr>
</thead>
</table>
| **5 kt** (2.5 m/s) | W: 197-209
PA: 0
PS: 0 | W: 83-100
PA: 0.6-1.8
PS: 7-15 |
| **15 kt** (7.5 m/s) | W: 391-425
PA: 0
PS: 0.03-0.20 | W: 68-108
PA: 0.06-0.09
PS: 1.4-2.2 |

- **W** = Wildlife
- **PA** = Plankton: Average Toxicity
- **PS** = Plankton: Sensitive Species
On-Going Project

- Other scenarios
- Matrix of model runs:
 - spills in open water
 - range of smaller oil volumes more likely to be dispersed
 - vary dispersant efficiency
 - vary key input variables determining impact
Products

- Results of model matrix:
 - areas and volumes impacted
 - #s of animals for representative densities
- Presented in tabular and chart format for can look up order of magnitude of likely impact
- Methods of interpolation between results for intermediate spill volumes
 - Visually off chart or table
 - Calculator in Excel
Model Run Matrix - Fates

- 2 Oil types: light and medium/heavy crude oil
- 2 Weather conditions
 - light wind and low turbulent mixing
 - high wind and high turbulent mixing
- 3 Temperatures
 - low (5°C), medium (15°C), and high (25°C)
 - affects weathering, uptake into biota, and toxicity
- Dispersant application
 - none
 - with three different efficiencies
- 5 Volumes - to allow curve-fitting of results
Model Run Matrix - Biological

- **Aquatic Toxicity**: 3 LC50s covering the range of ± two standard deviations (95%) of species response (French McCay, 2002)
 - mean [50 ppb dissolved PAH]
 - sensitive [5 ppb dissolved PAH]
 - insensitive [400 ppb dissolved PAH]

- **Wildlife**: Probability of oiling based on behavior and vulnerability
Model Results

• Water column impact
 • Volume where acute toxic effects would occur
 • equivalent volume for 100% mortality
 • multiply by mixed layer depth → area impact
 • Volume exceeding 1 µg/L total dissolved aromatics (sublethal and chronic effects)

• Area of water surface oiled
 • > Lethal dose to wildlife
 Probability of oiling varies by behavior group
 • >0.01 g/m² ~ approximate sheen thickness (socioeconomic impact)
SLAC, 5kt Wind: Area Where Wildlife Killed vs. Spilled Oil Volume

- Gallons
- Area (km²)

Legend:
- 25C, 0%
- 25C, 20%
- 25C, 50%
- 15C, 0%
- 15C, 20%
- 15C, 50%
- 5C, 0%
- 5C, 20%
- 5C, 50%
SLAC, 5kt Wind: Area Where Wildlife Killed vs. Oil Volume Not Dispersed

Area (km²) vs. Gallons

- 25°C, 0%
- 25°C, 20%
- 25°C, 50%
- 15°C, 0%
- 15°C, 20%
- 15°C, 50%
- 5°C, 0%
- 5°C, 20%
- 5°C, 50%
SLAC, 5kt Wind: Area Where Wildlife Killed vs. Oil Volume Not Dispersed

All Treatments:
\[y = 0.1859x^{0.7034} \]
\[R^2 = 0.99 \]
SLAC, 5kt Wind on DelMarVa Shelf: Birds Oiled vs. Oil Volume Not Dispersed

\[y = 7.6857x^{0.7065} \]

\[R^2 = 0.9899 \]
Wildlife Impact: Light Winds

Oiled = [0.257 $V_s^{0.6759}$] [#/km2] [Prob]

V_s = Volume of oil not dispersed
Prob = Probability of being present on water surface
SLAC, 5kt Wind: Area Where Plankton Killed vs. Oil Volume Dispersed

15°C

Area (km²) of 10-m Deep Mixed Layer

Gallons Dispersed

\[y = 3 \times 10^{-9}x^2 - 2 \times 10^{-5}x + 0.0123 \]

\[R^2 = 0.9939 \]

\[y = 8 \times 10^{-10}x^2 - 1 \times 10^{-5}x + 0.0244 \]

\[R^2 = 0.9105 \]

\[y = 0 \]

\[R^2 = \text{N/A} \]
SLAC, 5kt Wind: Area Where Plankton Killed vs. Oil Volume Dispersed

\[y = -4 \times 10^{-10} x^2 + 2 \times 10^{-5} x - 0.0171 \]

\[R^2 = 0.8957 \]

\[y = 0 \]

\[R^2 = \text{#N/A} \]

\[y = 0 \]

\[R^2 = \text{#N/A} \]
Water Column (Plankton) Impact: Light Winds

Killed = \[f(V_d) \] [#/m^3] [z_{mix}]

\[V_d = \text{Volume of oil dispersed} \]
\[Z_{mix} = \text{surface mixed layer depth} \]
Products

• **Report** - describing the technical approach, assumptions and results of the modeling and guidance development

• **Field guide** (PDF format)
 • Summarize the results
 • Look-up tables with charts, for each oil type and environmental condition

• **Spreadsheet-calculator** for looking up and interpolating results
Use of Guidance Calculator

• User inputs
 • Environmental conditions
 • Oil type
 • Volume spilled
 • Volume/fraction dispersed and efficiency

• Calculator
 • Will interpolate from results of model matrix to in-between conditions
 • Based on regressions of results
Workshop

- Conduct a focused half-day workshop
- At or adjunct to a spill-response related meeting or conference
- Present the results of the study
- Discuss dispersant decision-making using the tool
Conclusions

• Guidance provides order of magnitude results
 • as an input to response decision-making
 • for scoping potential impacts and NRDA
 • for planning water column sampling

• Use of volumes and areas impacts
 • Allows analysis when animal densities unknown or uncertain
 • Multiply by estimated animal densities - scales proportionately