Cold Water Pipe

What are the state of the art technologies?

The CWP must meet a number of requirements

Quantifiable technical drivers:	Anticipated quantitative loading	Dominant driver?	Met in LM design?	Basis
Buckling from net external pressure	7.5 psi suction inside CWP at top	Yes	Yes	FEA
Bending fatigue from platform motions, including knockdown for long-term seawater immersion	Approx. +/- 4 degrees of pitch or roll, plus surge and sway motions	Yes	Yes	Prelim. HARP analysis (10 MW plant) + prelim. test data on fatigue after high-pressure seawater conditioning to saturation
Buckling from platform motions	Same as preceding	No	Yes	FEA
Fatigue from Vortex-Induced Vibration (VIV)	Sheared current profile, approx. 4 fps surface velocity	No	Yes	Several analyses indicate no excitation of CWP in sheared currents
Tensile failure from clump weight and streaming current	CWP + clump weight; current profile	No	Yes	Bending and tension strain calculations
Core collapse from high pressure at 1000m depth	1500 psi	Yes	Yes	Venting of hollow core eliminates net pressure on core
Wet weight must be positive but not excessive	CWP & clump weight	Yes	Yes	CWP wet density is same as fiberglass/vinyl ester laminate
Corrosion	30-year immersion in seawater at depths to 1000m	Yes	Yes	Industry experience with fiberglass/ vinyl ester composites
Also:				
Behavior in service must be very reliable	CWP is single point of failure for OTEC plant	Yes	Yes	One-piece CWP eliminates maintenance / repair / failure of joints
Deployment must be low-risk	Very large consideration - Previous OTEC failures have been dominated by CWP deployment	Yes	Yes	Fabrication directly from the platform eliminates large risks associated with transport, assembly, upending, etc.
Cost must fit within OTEC plant budget profile	Electricity cost <= \$0.25/kwh for 100 MW OTEC plant in Hawaii	Yes	Yes	Minimum-cost design through optimization. Materials costs from supplier quotes; recurring fabrication costs from large wind turbine blade data

 FIRST GENERATION BASELINE: FRP-Sandwich per NOAA/DOE 1980s Design and At-Sea Testing, with horizontal towing and upending in-situ; Gimbal connected.

- *CWP very likely to be a sandwich pipe, possibility of fiberglass, how do we construct it may be the larger problem?
- Reliability?
- Failure usually at the joints of large composite materials, need ONE piece
- Cross currents and platform rocking cause stress
- Is the CWP design for a 100 year storm?
- Can we realistically temporarily remove the pipe in an emergency? What happens if a storm approaches?

- *One of the largest problems with the CWP includes DEPLOYMENT.
- Fabrication directly off of the platform could be the best option
- *What's new at the table?
- High strength fiberglass-substantial fatigue strength and cost effective
- Vinyl Ester resins-tough, corrosion resistant, experience
- Fabrication processes?
- VARTM, vacuum assisted resin transfer molding, now standard. Allows sandwich core manufacturing and also stepwise manufacturing
- Large protrusion processes, allows for hollow core manufacturing to try and combat press

- Available technologies are out there, rough quotations and specs are available.
- Materials identified
- Engineering methodology available
- Weather is a large concern for CWP depending upon location. De-coupling the pipe when a storm comes through is a possible solution.
- Three state of the art viable designs should be put on a timetable. If the most simple design is set in motion, others will be helped.