Platform Mooring

Session 2
• Mooring technology is mature and has been demonstrated in more challenging and demanding environments, it’s a matter of detailing and optimization to make it economic and viable in the environment for which it’s deployed.

• Key driver that will affect the evolution of OTEC mooring systems is cost.
Question 1

• Manufacturability
 – Achievable with COTS or custom products
 – Low to no risk

• Mobilization & Deployment
 – Achievable with COTS or custom products
 – Highest risk, high cost, most opportunity for cost savings
Question 1

• Operability
 – No special technology required
 – Existing techniques sufficient, slight modification may be required

• Reliability
 – No major issues
Question 1

• Logistics
 – Existing techniques and systems are sufficient

• Scalability
 – Yes
 – Some consideration for size and location
 – Cost driver
What risks are associated with failure with these processes?

- Manufacturing quality and testing to mitigate unexpected failures.
- Reduced confidence in the system.
- Risk of inability to deploy effectively & safely.
- Significant delay in startup
- Additional costs
- System failure
- Not accurately identifying risk and defining risk mitigation
- Limitation on overall size & placement of OTEC
Question 3:
What are the cost drivers for this component? What are possible cost-savings? What research could be done on cost reduction?
- **Cost Drivers:**
 - Spares;
 - Site conditions; location; water depth
 - Installation, vessel time
 - Material costs
 - Required performance
 - Installation risk & insurance
 - Labor cost
 - Permitting & regulations
 - Removal and decommissioning costs & requirements
- **Cost Savings:**
 - Mooring optimization (single point vs. multi point mooring)
 - Coordination of Optimization of design of platform
 - Less stringent motion and survivability requirements
 - Citing
 - Identifying the high cost factors and mitigate them
 - Optimize the cost of vessel & transportation
 - Self installing