POWER CABLE

DAY 2 – Breakouts II and III

POWER CABLE – Day 2

Assumptions

- Offshore
 - Less than 20 miles
 - Water depth 1,200 m or less
- Floating
- Moored
 - Cable and termination design depends on dynamics and azimuth constraints on platform and mooring configuration
 - Potential requirement to disconnect for weather drives complexity
- Potentially Relocatable (platform)
 - Not applicable for cable
 - Interconnect design depends on location
- 5-10 MW to commercial scale (100 MW)
 - Three phase AC cable, up to 10 MW
 - Three single phase AC cables, 100 MW
 - Cable includes power and communication controls
 - Cable includes own diagnostic system, fiber optic for temperature sensing

POWER CABLE – Day 2

Breakout II – Manufacturability

- Fabrication
 - Cable: Commercially available
 - Termination: Custom design b/c of motion
 - Fatigue testing required
- Deployment
 - Difficult but well understood
 - Difficult on steep shelf
 - Issue with depth b/c of limited experience
 - Handling the weight of cable
 - Cable site survey and route planning necessary
- Installation
 - Need sufficient space for platform substation
 - AC equipment requires less space

Breakout II – Operability

- Operation
 - Fully automated and controlled from shore
 - Enclosed environmentally controlled substation
 - Keep out salt water and humidity
 - Dry type oil free transformer
- Maintenance
 - Cleaning
 - Periodic marine growth (diver), and full cable inspection
 - Annual maintenance of substation
 - Cable Repair
 - Standard practice in shallow water
 - More difficult in power cables in deep water
 - Splice requires mobilization of ship
 - Replacement
 - Leave adequate time to order new cable
 - Depends on location of fault

Breakout II – Reliability

- Monitoring performance
 - Fiber optics to monitor temperature
 - Online methods for monitoring partial discharges in cable insulation
 - Location of cable faults done with injected voltage pulse
- Fatigue Mitigation
 - Control of abrasion on cable at the sea floor and sea junction near platform
 - Strumming suppression?
 - Flexing fatigue (bend strain relief and/or flotation)
- Personnel Safety and Emergency Preparedness
 - National Electric Safety Code or international equivalent
 - OSHA
- Decommissioning
 - Recovery of cable depends on environmental permit agreement

Breakout II – Logistics

- Specialized ships needed for repair and deployment
- Shore landing equipment e.g.
 - Horizontal directional drilling (HDD)
 - Trenching
- Utility interconnect study needs to be done to establish shore side transmission capacity

Breakout II – Scalability

- Cables are commercially available from 10 kV to 500 kV
- Unlikely using same type of cable from 10MW plant to 100 MW plant
- Should cable be planned for future upgrade on the platform?

Breakout II – Life Cycle

- Risks from Failure?
 - Failure to comply with terms and conditions of contractual obligations
 - Not generating revenue for lack of power generation
 - Downtime could be long
 - Lack of repair ship
 - Time to find fault location
 - Long lead time for ordering new cable

Breakout II – Life Cycle

- Cost limiting factors?
 - Material costs such as copper and steel
 - Shortage of cable manufacturing capability
 - Limited number of cable laying ships
 - Weather and location
 - Scheduling of ships
 - Survivability mitigation (burying or trenching, micro tunneling)

Breakout II – Life Cycle cont.

- Cost savings?
 - Tagging on to existing orders
 - Location closer to shore landing means less cable
 - Distance to shore from interconnect should be shorter
 - Overhead line from shore to utility connection
- Research for cost reduction?
 - Reducing weight with use of different materials
 - Flexible connection and termination to platform
 - Fatigue testing

Breakout III

- Technologies viable?
 - Cable
 - TRL-8/9
 - MRL-9/10
 - Cable connection at platform
 - TRL and MRL-5? Depending on requirements (like mooring, platform dynamics, quick disconnect) and needs further study
 - Custom solution
 - Site specific
- Economic factors?
 - Exchange rate
 - Cost of materials

Breakout III cont.

- Hurdles or limiting factors?
 - Cable route
 - Limited supplier of armored cable
 - Riser Cable
 - Flexible connection to platform
 - Availability of ship

Breakout III

- Development time frame?
 - -2-3 years
 - Driven by OTEC system level modeling, simulation and design
 - Cable connection to platform
 - Integrated platform mooring cable simulation
 - Normal design and development time frame for pilot plant