OTECA Cycles and Auxiliary Uses

C.B. Panchal
E3Tec Service, LLC
Phone: 443-812-5930
cpanchal@msn.com
OTEC Power Cycles

- **Closed Cycle**: leading power cycle; ammonia or hydrocarbon working fluid; single stage or multi-stage
- **Open Cycle**: originally pursued by Westinghouse and 210 kW Prototype system tested at NELHA, Hawaii
- **Hybrid Cycle for co-production of power and desalinated water**: pursued by Westinghouse (large scale plants) and Argonne National Lab (small land-based plants)
- **Ammonia-Water Absorption Power Cycle**: Pursued for Geothermal power and being considered for OTEC
- **Mist-lift Cycle**: Prototype unit tested; no significant development work pursued
- **Salinity-Gradient Cycle**: Concept developed
Effective utilization of seawater temperature difference without high costs of heat exchangers is key to the overall economics of OTEC plants.
Ammonia-Water Absorption Power Cycle

Heat/Mass transfer resistances that would produce non-equilibrium conditions limit the thermodynamic advantages of ammonia-water absorption power cycle.
Open Cycle

Large scale low-pressure turbine is a key component to be developed for commercial viability of OC-OTEC plants.
Hybrid Cycles for Coproduction of Power and Desalinated Water

- Integrated Hybrid Cycle
- Combined (Parallel or in-Series) Hybrid Cycle

On-Board Reverse Osmosis (RO) is an option for at-sea production of desalinated water
OTEC Plantships for Ammonia Production

- Ammonia is being considered as the hydrogen carrier for renewable energy sources – wind, remote PV, and OTEC
- Global impact of OTEC Plantships – Four Strategic Regions
Other Auxiliary Uses and Products

- Cold-water can be used for air-conditioning at selected sites

- Mariculture seems attractive; however, limited to land-based plants with additional requirements of seawater quality for downstream use of seawater for mariculture

- Micro-Algae is being pursued for small OTEC plants for favorable island sites
Technology Status

- 1st Generation of Commercial OTEC plants will most likely be designed based on closed cycle with ammonia as the working fluid.
- Hybrid cycle would be considered for sites with critical water requirements.
- Towards the end of federal funding in 1980s, aluminum was qualified for OTEC heat exchangers and biofouling became manageable; however, further development work could not be continued to develop OTEC-optimized modular aluminum heat exchangers.
- Multi-stage Rankine cycle requires the development of modular high-performance heat exchangers that can be easily integrated with out significant engineering.
Technology Status

- Ammonia-water absorption cycles have potentials in 2nd or 3rd generation of OTEC plants with the development of high-performance heat/mass transfer exchangers.

- There are critical technical issues to demonstrate the viability of the mist-lift cycle for large OTEC plants due to the uncertainty of the two-phase flow in large riser pipe.

- Haber-Bosch is commercial ammonia synthesis process hydrocarbon as feedstock.

- Innovative solid-state ammonia synthesis process has been proposed with significantly improved energy efficiency.

- Technical and economic viability of OTEC micro-algae based fuel need to be evaluated.
Path Forward
Five-Step Commercialization Goals

1. Global displacement of petroleum-based fuels (diesel and fuel oil) for power generation specifically in the island market
2. At-sea production of desalinated water for regions of critical water shortages
3. Displacement of carbon-based production of fertilizer ammonia
4. Hydrogen supply to allow economic processing of heavy crude oils and upgrading oil sands
5. Ammonia-fuel-based distributed energy to displace natural-gas for power generation