Assessing oil toxicity: methods & models

University of Florida Institute of Oceanography

Thomas F. Parkerton
September 27, 2011
Outline

• Toxicity assessment of single hydrocarbons to aquatic/marine life
 – Target lipid model

• Methods for testing complex hydrocarbons, e.g. crude oil
 – Water Accomodated Fraction (WAF) test procedure

• Tools for predicting toxicity
 – Additive toxic unit model
 – Biomimetic extraction analysis

• Influence of chemical dispersants on oil toxicity

• Additional issues
 – Photo-enhanced toxicity
 – Bioaccumulation of PAHs in foodchain

• Summary & research needs
Narcosis

- Non-specific, perturbation of membrane function that results in decreased activity (e.g. ventilation, oxygen consumption, heart rate), immobilization and ultimately death to organisms
- Applicable to many classes of chemicals including hydrocarbons
 - Minimum level or “baseline” toxicity independent of exposure route
 - Shown to correlate with substance hydrophobicity until toxicity “cut-off”
Inhibition of Mussel Filtration Rate

![Graph showing inhibition of mussel filtration rate](image)

- **Log Kow**
- **Log Effect Concentration (umol/L or umol/g)**
- **EC50** water effect concentration
- **TC50** tissue effect concentration
- **TC0**
- **Water**
- **Tissue**

Source:
Predicting Narcosis using the Target Lipid Model

CTLBB for a chemical is determined as:

\[\text{CTLBB} = \text{LC}_{50} \times \text{KT}_{L-W} \]

(1)

Rearranging and taking logs:

\[\log(\text{EC}_{50}) = \log(\text{CTLBB}) - \log(\text{KT}_{L-W}) \]

(2)

Based on linear-free energy relationships:

\[\log(\text{KT}_{L-W}) = a_0 + a_1 \log(K_{ow}) \]

(3)

Substituting (3) into (2) yields:

\[\log(\text{EC}_{50}) = \log(\text{CTLBB}) - a_0 - a_1 \log(K_{ow}) \]

(4)

CTLBB = critical target lipid body burden (mmol/kg octanol)

EC\(_{50}\) = aqueous concentration that causes a 50% response (mmol/L)

KT\(_{L-W}\) = target lipid water partition coefficient (L/kg lipid)

K\(_{ow}\) = octanol water partition coefficient (L/kg octanol)

a\(_o\), a\(_1\) = empirical constants that relate partitioning at target site to octanol
Calibration of TLM using Acute Toxicity Data Sets

Results of TLM calibration

• Quantitative relationships developed for 56 species
 – amphibians, fish, invertebrates, algae, microbes / aquatic & marine
 – ca. 1000 reliable acute toxicity tests for 250+ chemicals
 + aliphatic hydrocarbons, alcohols, ethers, ketones, mono-, and poly-aromatic hydrocarbons including halogenated structures than span a log(K_{OW}) range from 0 to 6

• a_0 chemical class dependent
 – $a_0 = 0$ for most HCs (baseline); = 0.35 for PAHs (2X potency)
 – attributed to polar interactions that increase affinity for target site

• a_1 constant across narcotic chemicals!
 – $a_1 = 0.936$

• Intercept [log (CTLBB)] is species-dependent
 – used to define species-sensitivity distribution (next slide)

CTLBB Species - Sensitivity Distribution

Species vary in sensitivity by 20-fold

Extrapolation to Chronic Effects

Acute to Chronic Ratio

\[\text{ACR} = \frac{\text{acute } L/EC_{50}}{\text{chronic } \text{NOEC}/EC_{10}} \]

For hydrocarbons ACRs vary 10-fold

Derivation of Water Quality Criteria

- Final Chronic Value (mmol/L) is given by:
 \[
 \log (FCV) = \log(CTLBB_{5th}) - 0.936 \log(K_{ow}) - a_0 - \log (GMACR)
 \]

 \(CTLBB_{5th}\) = 5\(^{th}\) percentile of CTLBB species-sensitivity distribution

 \(GMACR\) = Geometric Mean Acute to Chronic Ratio

Source: DiToro et al. (2007) ET&C 26:24
Testing Complex Substances

- **Water Accomodated Fraction (WAF):** An aqueous medium containing the fraction of the petroleum product that remains in the aqueous phase once mixing is terminated and phase separation has occurred
 - WAF = soluble phase (dissolved fraction) + droplets (colloidal fraction)
 - WAFs are prepared at multiple oil-water ratios (i.e. Loadings)
 - Test method described by OECD guidance document

- **Practical Considerations:**
 - How to add the test substance to dilution water?
 - How to mix?
 - How long to equilibrate?
 - How long for phase separation after mixing?
 - How to sample WAFs for testing?
 - How to expose test organisms and express test results?
Outline of WAF Test Procedure

• Add a measured volume (liquids) or weight (solids) of substance to known volume of water in a sealed test vessel
 – Contains 5-10% headspace to allow mixing & includes Teflon coated stir-bar
 – Equipped with port at bottom for sampling WAFs with low density (floating) or glass siphon tube in middle for sampling high density (sinking) products

• Stir oil-water solution on magnetic stir plate at a rate that provides good mixing but prevents emulsion formation
 – Use mixing rate that creates < 10% vortex of static depth of oil-water solution
 – Typically stir at room temperature (22 ± 2 °C)

• Continue mixing until equilibrium is obtained
 – Take periodic samples for chemical analysis
 + TOC, Solvent extraction coupled with UV Spectroscopy/GC-FID or MS
 + Solid phase microextraction (SPME) coupled with GC-FID or MS
 – 48-96 hrs generally sufficient for most complex petroleum substances
WAF Preparation of Liquids

![Image of a glass tube on a digital scale]
WAF Vessel / Mixing
Preparation of WAFs for Toxicity Testing

Loadings (Exposure Treatments)
Aqueous Solubility Behavior

Single Hydrocarbon

- Aqueous Concentration
- Amount of Substance Added
- Dissolved
- Free Product
- Solubility Limit

Multi-Component Oil

- Aqueous Concentration
- Amount of Substance Added
- Dissolved
- Free Product
- Raoult’s Law
- Solubility Limit of Least Soluble Constituent
SPME Fiber Chromatograms for Crude Oil WAFs

Crude Oil APIG = 32

Retention time (min)

FID Detector Response (µV-sec)

700 mg/L
40 mg/L
6 mg/L
Outline of WAF Test (Cont’d)

• Stop mixing / allow phase separation
 – Typically allow 1 hour unless adjustment to different temperature required (e.g. trout studies) which may require longer periods

• Withdraw solution from WAF test system
 – Discard first 100 mls
 – Collect sample for toxicity testing by directly transferring WAF via gravity flow to air tight exposure vessels to which test organisms are introduced
 – Need to consider oxygen depletion concerns especially for fish
 + Use static renewal exposure design
 + Add pure oxygen
 – Need to consider pH changes for algae
 + Increase buffering capacity of test media

• Observe test organism response to WAFs
Chemical Disperants

• Designed to exhibit low aquatic toxicity
 – Less toxic than the oil to be dispersed
• Increases amount of oil in aqueous test media
 – Augments “effective” loading potentially increasing dissolved or ‘bioavailable” hydrocarbon concentrations
 – Increases undissolved hydrocarbon, i.e. droplets
SPME Chromatogram Comparison for Physical & Chemical Dispersion

Chemical

Physical

Crude Oil API G = 32
Same Loading = 100 mg/L

FID Detector Response (µV-sec)

Retention time (min)
Other Approaches

• **Use of Water Soluble Fractions (WSF)**
 – Filter WAF to remove undissolved oil
 + Potential for removal of dissolved constituent
 + Adds significant effort to test
 + Can be used to investigate role of physical effects associated with highly dispersed WAFs

• **Use of WAF / WSF dilutions**
 – Prepare WAF / WSF at a given loading (e.g. 10 g oil /L water)
 – Make serial dilutions of the WAF / WSF
 – Exposure test organisms to WAF / WSF dilutions
 – Express toxicity in terms of % dilution
 – Traditionally used in oil spill studies

Cautionary Note: A 1:100 dilution of a 10g/L WAF ≠ 100 mg/L WAF since amount and composition of hydrocarbons will differ
Tools for Predicting Toxicity

- **Additive Toxic Unit Model**
 - Given detailed composition of oil simulate composition of aqueous hydrocarbons in WAF test system
 - Use TLM to calculate species-specific toxicity to all predicted hydrocarbons in WAF
 - Calculate additive contribution of each hydrocarbon to toxicity

\[
TU_i = \frac{C_{w,i}}{C_{w,i}^*} \quad \text{and} \quad \text{Total} \ TU = \sum_{i=1}^{n} TU_i
\]

where:
- \(C_{w,i} \) = aqueous concentration of hydrocarbon \(i \) predicted in WAF
- \(C_{w,i}^* \) = aqueous effect concentration (e.g., LC\(_{50}\)) of hydrocarbon \(i \)

- \(TU < 0.3 \) \hspace{1cm} \text{Toxicity Unlikely}
- \(0.3 < TU < 2.0 \) \hspace{1cm} \text{Toxicity Uncertain}
- \(TU > 2.0 \) \hspace{1cm} \text{Toxicity Likely}
Overview of PETROTOX Model

Model Structure Library

Petroleum Product Composition

Initial Petroleum Product Loading

Air
Henry’s Law

Water
Raoult’s Law

Oil
(NAPL)

WAF Model

WAF Hydrocarbon Concentrations

C_1, water
C_2, water
C_3, water
.....
C_n, water

Toxic Units = \sum_{i=1}^{n} \left(\frac{C_i}{LC_{50i}} \right) = 1?

Effect Model

Hydrocarbon Toxicities

LC_{50} 1, water
LC_{50} 2, water
LC_{50} 3, water
.....
LC_{50} n, water

Target Lipid Model

Select new loading & repeat until convergence

See: http://www.concawe.be/content/default.asp?PageID=778
Use of TLM to Predict Acute Toxicity of Gasolines

Tools for Predicting Toxicity (Cont’d)

• Biomimetic Extraction Analysis:
 – Ecotoxicity occurs when \{molar\} in organism lipid exceeds a critical threshold, i.e., CTLBB

 – For given organism / endpoint, CTLBB is ~ constant for different hydrocarbons which act by a common mode of action

 – Ecotoxicity of hydrocarbon mixtures is additive i.e., CTLBB concept applies to complex petroleum products

 – SPME fibers serve as a surrogate for organism target lipid

 – Total amount of hydrocarbons that sorb from a petroleum contaminated sample (e.g. WAF) to SPME fiber used for quantitative toxicity prediction
Mysid Toxicity Case Study

• Prepare physically and chemically dispersed WAFs
 – Five crude oils, no. 2 fuel oil
 – Two dispersants
 – Multiple oil loadings

• Measure SPME fiber concentrations associated with each WAF
 – Equilibrate fiber in WAF for 24 hrs
 – Inject fiber into GC/FID
 – Quantitate using molar response of C₂-naphthalene
 – Express results as umol/ml PDMS = mM PDMS

• Determine 48-hr acute toxicity using *Mysidopsis bahia*
Mysid Toxicity vs Oil Loading

- Toxicity highly variable across treatments

% Mortality vs Loading (mg/l)

Source: Parkerton et al. 1999
SETAC Europe Presentation
Mysid Toxicity vs C\textsubscript{Fiber}

- Clear dose-response across treatments; dispersed oil not different

Source: Parkerton et al. 1999
SETAC Europe Presentation
Further Validation Efforts

- Prepare WAFs using no. 2 fuel oil at different loadings
- Determine C_{Fiber} and toxicity for different test species
- Use C_{Fiber} – toxicity responses to estimate critical fiber burdens (CFBs)
- Translate CFBs into CTLBBs given $K_{\text{TL-W}} / K_{\text{PDMS-W}} \sim 8$

Source: Parkerton et al. 2009
SETAC Europe Presentation
Photo-Enhanced Toxicity

• Selected PAHs shown to be more toxic in lab in presence of UV light

Mount et al., (2001)
Linking exposure and dosimetry to risk from photo-activated toxicity of PAHs. Presented at the 2001 Annual SETAC Meeting. Baltimore, MD.

• Toxicity predicted by product of UV intensity and PAH tissue residue
 – UV intensity depends on location, season, time of day, water clarity; decreases exponentially with water depth
 – PAH tissue residue depends on PAH exposure concs and organism

• Influence of UV light on PAH toxicity offset by photodegradation
 – Estimated aqueous photolysis half-life for anthracene ca. minutes to days
Bioaccumulation of PAHs in Foodchain

- Selected PAHs known to be carcinogenic/mutagenic, e.g. benzo(a)pyrene, dibenz(a,h,)anthracene, chrysene

- Bioconcentration at base of foodweb limited by dissolved PAH concs.

- Subsequent transfer to higher organisms mitigated by biotransformation processes
 - PAHs shown to biodilute, not biomagnify in foodweb
 + Lab Biomagnification Factors (BMFs)
 + Field Trophic Magnification Factors (TMFs)
Lab Dietary Bioaccumulation Test

• Spike hydrocarbons to commercial fish diet
 – Lipid content of diet 15%
 – Spike liquids directly, solids in corn oil

• Confirm dietary concentrations analytically

• Feed 3% ration of spiked diet to trout or carp
 (1-5 grams; 2-4% lipid) for 7 to 10 days (uptake)

• Transfer exposed fish to clean food (depuration)

• Analyze fish at different depuration times
 e.g. 0, 1, 3, 7, 14, 21 days

• Use hexachlorobenzene as positive control
Bioaccumulation Data Analysis

• Use experimental depuration data to deduce:
 – Growth-corrected half-life ($t_{1/2}$)
 + Derived from slope of depuration plot & fish growth rate
 – Assimilation efficiency from diet (α)
 + Derived from intercept of depuration plot & first-order model
 – Biomagnification factor (BMF)

\[
BMF = \frac{C_{\text{fish, lipid}}}{C_{\text{diet, lipid}}} = \frac{\alpha I_{\text{diet}} t_{1/2}}{0.693 \frac{L_{\text{diet}}}{L_{\text{fish}}}}
\]

<table>
<thead>
<tr>
<th>BMF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>Trophic Dilution</td>
</tr>
<tr>
<td>= 1</td>
<td>Equilibrium Partitioning</td>
</tr>
<tr>
<td>> 1</td>
<td>Biomagnification</td>
</tr>
</tbody>
</table>
Trout BMFs for Aromatic Hydrocarbons

Biomagnification

Trophic Dilution

Monoaromatics
Diaromatics
Polyaromatics
Partially Saturated
Hexachlorobenzene
PCBs
EqP
Gobas

Source:
Parkerton et al. (2008)
U. Amsterdam PAH Workshop presentation

PCB data from Fisk et al. 1988 ET&C 17:951
Field Bioaccumulation Assessment

- Collect field organisms from foodweb: analyse tissues for chemical and nitrogen isotopes
 - nitrogen isotopes used to determine trophic level (TL)
- Regress chemical concentration against TL to determine trophic magnification factor (TMF)
 - mean increase (biomagnification) or decrease (biodilution) of chemical / TL

\[
\log C_{\text{lipid}} = a + b (\text{Trophic Level})
\]

\[
TMF = 10^b
\]

- \(TMF < 1 \) Trophic Dilution
- \(TMF = 1 \) Equilibrium Partitioning
- \(TMF > 1 \) Biomagnification

Source: Wan et al. 2007 ES&T 41:3100
Literature TMFs for PAHs

<table>
<thead>
<tr>
<th>PAH</th>
<th>TMF Ref =1</th>
<th>TMF Ref =2</th>
<th>TMF Ref =3</th>
</tr>
</thead>
<tbody>
<tr>
<td>benz[a]anthracene</td>
<td>0.20</td>
<td>0.75</td>
<td>0.83</td>
</tr>
<tr>
<td>benzo[a]pyrene</td>
<td>0.24</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>benzo[e]pyrene</td>
<td>0.25</td>
<td>0.86</td>
<td>0.57</td>
</tr>
<tr>
<td>benzo[ghi]pyrene</td>
<td>0.27</td>
<td>0.84</td>
<td>0.69</td>
</tr>
<tr>
<td>benzo[ghi]perylene</td>
<td>0.66</td>
<td>0.75</td>
<td>0.72</td>
</tr>
<tr>
<td>chrysene</td>
<td>0.26</td>
<td>0.66</td>
<td>0.65</td>
</tr>
<tr>
<td>fluoranthene</td>
<td>0.11</td>
<td>0.72</td>
<td>0.60</td>
</tr>
<tr>
<td>indeno-123-cd]pyrene</td>
<td>0.81</td>
<td>0.75</td>
<td>0.80</td>
</tr>
<tr>
<td>dibenz[ah]anthracene</td>
<td>0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perylene</td>
<td>0.24</td>
<td>0.67</td>
<td>0.77</td>
</tr>
<tr>
<td>phenanthrene</td>
<td>0.43</td>
<td>0.82</td>
<td>0.75</td>
</tr>
<tr>
<td>pyrene</td>
<td>0.17</td>
<td>0.74</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Summary

• The target lipid model provides a quantitative framework for predicting the acute and chronic toxicity of single and complex hydrocarbons

• The WAF test procedure is the preferred test method for assessing the aquatic toxicity of complex petroleum substances
 – method endorsed by OECD
 – accounts for multi-component dissolution behavior

• Passive sampling methods (e.g. SPME fibers) that quantify dissolved hydrocarbons in WAFs provide simple analytical tool to support testing and toxicity prediction

• Chemical dispersants exhibit low toxicity but can increase the bioavailability of hydrocarbons in the oil being dispersed
 – can result in increased WAF toxicity in lab studies
 – offset by role bioavailability plays in reducing field exposures, e.g. dilution, biodegradation

• Photo-enhanced toxicity and bioaccumulation in foodweb depends on dissolved PAH concentrations in the field; significance further limited by:
 – UV attenuation in water column and photodegradation
 – biodilution in the foodchain
Research Needs?

• Develop reliable CTLBBs and ACRs for additional GOM species, e.g. sponges, corals for which limited data are available.

• Develop data and improved models for characterizing toxicity of aromatic hydrocarbons on survival, growth and reproduction of key GOM species under time-variable exposure and field conditions, e.g. temperature, UV light, oxygen.

• Link toxicity and population models to predict population-level responses.

• Further investigate analytical and short-term toxicity screening tests for use in future spill response.
Selected Publications

