Non-floating Oil Spills: Structure and Outcomes

- Plenary talks (getting everyone on the same page)
 - Case Studies
 - Submerged Oil Overview
 - Biological Effects/Restoration
Non-floating Oil Spills: Structure and Outcomes

• Breakout Groups
 ♦ Detection and Monitoring
 ♦ Fate and Transport
 ♦ Containment and Recovery
 ♦ Effects and Restoration
 ♦ Protection of Water Intakes
Non-floating Oil Spills: Structure and Outcomes

• Group Reports
 ♦ Research Need
 ♦ Objectives
 ♦ Guidelines
 ♦ Potential Impediments or Enhancements to Research
 ♦ Application to the Decision-Making Process
Non-floating Oil Spills: Structure and Outcomes

- Workshop Report
 - **Tables** generated by each group
 - **Synthesis** into language for the preparation of study plans for future funding mechanisms or research proposals
 - Workshop **Summary** based on discussions at last plenary session
Submerged Oil Overview

Jacqueline Michel

Research Planning, Inc.
Response Challenges for Non-floating Oil Spills

- Detection of pooled oil on the bottom
- Detection/tracking of mobile oil suspended in the water column
- Predicting fate and transport of submerged oil
- Containment of oil on the bottom
- Containment of suspended oil
Response Challenges for Non-floating Oil Spills

- Protection of water intakes
- Submerged oil recovery
- Submerged oil injury assessment and resource restoration
Non-floating Oil Spills: Detection of Oil on the Bottom

• Needs for detection of pooled oil on the bottom
 ♦ Thickness (generally “thin” 1-10 cm)
 ♦ Dimension of oil accumulations
 ♦ Patch size or percent cover in accumulation
 ♦ Need to estimate volume/area
Non-floating Oil Spills: Detection of Oil on the Bottom

• Visible Surveys
 ♦ Clear water only
 ♦ Need diver validation/thickness measure
 ♦ Rapid turnaround of results
 ♦ Standard spill response method
Morris J. Berman, Puerto Rico
Lake Wabamum, Canada
Non-floating Oil Spills: Detection of Oil on the Bottom

• Diver Observations/Video
 ♦ Water visibility/depth/wx limits
 ♦ Need divers anyway for validation
 ♦ Low areal coverage/poor quantification
 ♦ Contaminated diving expertise limited
Non-floating Oil Spills: Detection of Oil on the Bottom

- ROV Video/Photography
 - Water visibility/wx limits
 - Systems with good GPS tracking of ROV
 - Not much experience in response community on capabilities
 - Need rapid post-processing to produce useful products (georeferenced oil maps)
Non-floating Oil Spills: Detection of Oil on the Bottom

- Sorbent Drops
 - Sorbent material attached to weights, dropped/dragged a short distance, then inspected for oil
 - Embarrassingly crude but simple
 - First used in 1984 at *Mobiloil* spill in Columbia River; latest in 2003 at *Athos 1*
Non-floating Oil Spills: Detection of Oil on the Bottom

- Chain drags/V-SORs
 - Sorbent material attached to chains and dragged some distance, then inspected for oil
 - Used at many submerged oil spills as an initial search strategy
 - Provides data only on relative amounts of oil within drag area
 - Many limitations, but still useful
Non-floating Oil Spills: Detection of Oil on the Bottom

• Acoustic Systems

♦ Lots of good capabilities (no water clarity limits, georeferenced, good areal coverage rates, 2D imagery, available technology)

♦ Lots of limitations (detection limits for oil thickness, patch size; substrate effects; post-processing time; water depth; needs validation)

♦ Little experience in response community
DBL 152 Debris Field and Trench
DBL 152 Oil Patch (?)
Non-floating Oil Spills: Detection of Oil on the Bottom

- Chemical Detection Systems
 - Only experience is with field fluorometers for oil in the water column
 - Potential technologies available
 - Effects of suspended oil (dissolved/particulate), physical processes/transport
 - Correlation of signal with amount of oil?
Non-floating Oil Spills: Detection of Mobile Oil

- Detection of mobile oil suspended in the water column
 - Can be dynamic/episodic at different time-scales
 - Can be along bottom/just under the surface
 - Desperate need for quantification of amount
Non-floating Oil Spills: Detection of Suspended Oil

- Stationary sorbent systems
 - Snare on ropes, in pots; on the bottom and in the water column
 - Uses readily available response materials
 - Provide good info on vertical distribution
 - No quantification or calibration of efficiency
Non-floating Oil Spills: Detection of Suspended Oil

- Trawled Systems
 - Mostly fish nets with snare
 - Used as recently as 2004 - Lake Wabamum
 - There are commercial oil recovery nets in the UK, never used in US
 - Better designs could be used for quantification
Non-floating Oil Spills: Detection of Suspended Oil

- Chemical Sensors
 - Only experience is with field fluorometry
 - Can sample different water depths
 - Need better understanding/calibration between dissolved and suspended oil
 - Fouling, contamination issues
Non-floating Oil Spills: Predicting Fate and Transport

• Processes that determine when oil submerges
• Oil/sediment interactions
• Processes that determine submerged oil movement
• Weathering of submerged oil
• Data gaps to provide better predictions
BEHAVIOR OF SPILLS OF HEAVY OILS

Oil-to-Water Density Ratio

- **< 1.0**
 - Majority floats initially
 - Currents: High
 - Sediment Interaction: High
 - **Oil Sinks**
 - after standing onshore and mixing with sand
 - after mixing with sand suspended by wave action
 - oil can refloat after separating from sand

- **> 1.0**
 - Majority does not float initially
 - Currents: High
 - Oil is suspended in water column
 - Sediment Interaction: High
 - **Oil Sinks**
 - after mixing with sand (unsure of effect of mixing with silt/clay)
 - Currents: Low
 - Oil sinks to bottom
 - Sediment Interaction: Low
 - **Oil Disperses**
 - transport and mixing by current and waves
Non-floating Oil Spills:
Protection of Intakes

• What are thresholds for different water uses and treatment systems (always “0”?)
• What detection methods are available?
• How do we communicate effectively with operators?
• Effective protection strategies
Non-floating Oil Spills: Containment/Protection of Intakes

• Filter fences
 ♦ Geotextile fabric - Lake Wabamum
 ♦ “Snare monster” - *Athos 1*
 ♦ Silt curtains

• Air bubble curtains - Lake Wabamum
• Net booms
Non-floating Oil Spills: Oil Containment/Protection of Intakes

• Obvious need for improved technologies
• Need better site assessment/engineering design to improve effectiveness under typical current/flow conditions at intakes
• Need for systems to contain oil suspended during bottom oil recovery operations
Non-floating Oil Spills: Containment of Oil on Bottom

- Bottom booms, in theory
- Permeable barriers to allow water to pass but retain oil
- Bottom currents, oil resuspension processes are poorly understood
- Oil can re-suspended during high-energy events
Non-floating Oil Spills: Recovery of Oil on Bottom

• Diver directed pumping
 ♦ Reduce water/increase oil recovery rates
 ♦ Improve pumping rates
 ♦ Improve oil pickup efficiency (sleds with larger vacuum units, hose management, oil concentration methods)
Athos 1 - Venezuela Crude Oil
Non-floating Oil Spills: Recovery of Oil on Bottom

- ROV directed pumping
 - Deeper water; diver safety
 - Reduce water/increase oil recovery rates
 - Improve pumping rates
 - Improve oil recovery
Non-floating Oil Spills: Recovery of Oil on Bottom

- Dredges
 - Appropriate types/dredge heads
 - Emergency modifications for oil recovery
 - Emergency permitting issues
Non-floating Oil Spills: Recovery of Oil on Bottom

• Decanting systems
 ♦ *Always ad hoc*, under designed, and often fail, lots of trial and error
 ♦ Need guidelines and calculation tools
 ♦ Consider droplet size, flow rates, oil behavior *(float or not)*
 ♦ Still need to use readily available materials
Athos 1 Decanting - Oil Floated
Athos 1 Decant “System”
Lake Wabmum - Tarball Recovery/Decanting
Non-floating Oil Spills: Injury Assessment/Restoration

- What are likely effects based on exposure pathways (smothering, coating, low aquatic toxicity, ingestion)
- Biological assessment and monitoring approaches?
- Methods for scaling of injury?
- Restoration options?
Submerged Oil Summary

• Need new technologies for detecting, tracking, modeling, containing, protecting, recovering, decanting, assessing, restoring

• But, they need to be “emergency” ready

• Your charge next 1.5 days: Identify R&D projects to meet these needs