

HazMat: NOAA's Response Team

Established, 1976

- Scientific support to US Coast Guard
- Seattle, National HQ
 - 40 scientists, technicians, administrators
 - 9 Scientific Support Coordinators around US
- Provide forecasts, trajectories, planning tools, training, lessons learned
- About 100-150 calls each year in US
- International support (Spain, Galapagos, Chile)

What Is Response?

noaa

National Oceanic and Atmospheric Administration • National Ocean Service • Office of Response and Restoration

How Can This Speed Recovery... ${\it Moddl}$

...of These?

Response Options

- No Response
- Place of refuge
- Open water
 - Mechanical (Skimmers)
 - Dispersion
 - In Situ Burning
- Shoreline
 - No Response
 - Manual
 - Mechanical
 - Hydraulic washing
 - Chemical Cleaners
 - Bioremediation

Effectiveness of Response

Initial Response

- 11,000 people, 100's of boats, 8000 aircraft sorties
- Open water: booming, skimming
- Shoreline: manual, then mechanical, primarily pressure washing with flooding
- Trials with shoreline cleaners, bioremediation
- "Vendor spill"
- Oily wastes shipped to Oregon

Initial Mass Balance

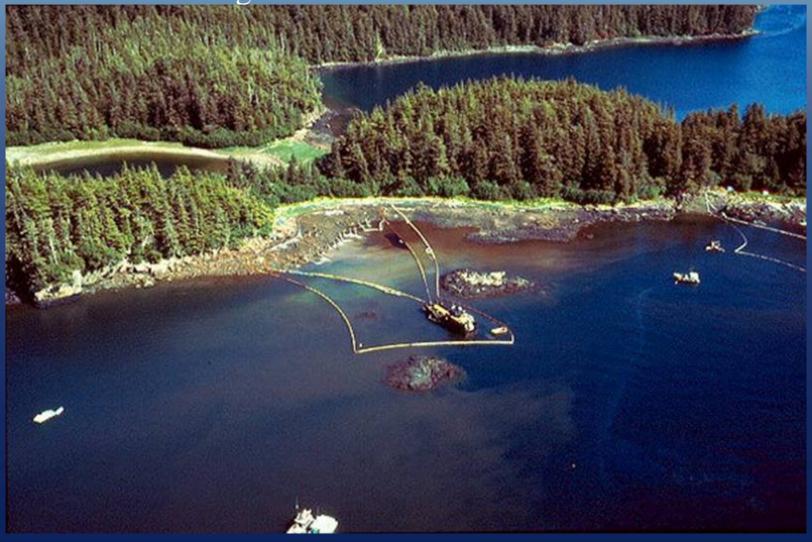
- 20% Evaporated
- 20% Dispersed
- 50% Beached
 - 40% in western Prince William Sound
 - 7 11% outside PWS
- 14% recovered and disposed
 - 8-9% by skimming
 - 5-6% by solid waste removal

Final Mass Balance: 3 Years Later

Floating	0)%	0

- Beached 2%
- Recovered and Disposed 14%
- Sub-tidal Sediments 13%
- Dispersed1%
- Aqueous degradation 50%
- Atmospheric products 20%

Source: American Fisheries Society, Symposium 13, 1996, Bethesda, Md.


Initial Impacts on Birds and Mammals

250,000 (100,000 - 650,000) sea and shore birds

•	90 species	killed	total pop size
	 Marbled murrelets 	8000	80,000-160,000
	 Kittiwakes 	1200-2400	268,000
	 Bald eagles 	300	1000's
•	Harbor seals	300	2300
•	Sea otter	2800	10,000

noaa

Shoreline Washing at Block Island

National Oceanic and Atmospheric Administration • National Ocean Service • Office of Response and Restoration

noaa

After the Omni

National Oceanic and Atmospheric Administration • National Ocean Service • Office of Response and Restoration

National Oceanic and Atmospheric Administration • National Ocean Service • Office of Response and Restoration

How Clean is Clean Enough? Modul

Who is exposed to this?

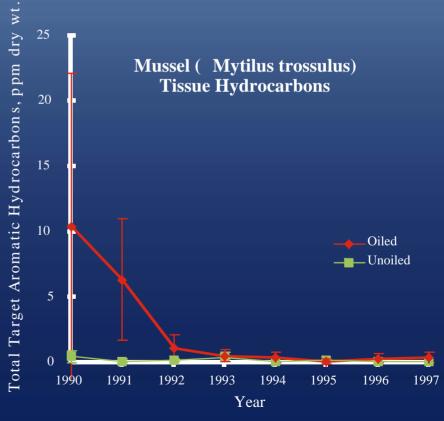
noaa

How important are the PAH's?

noaa

PWS: Is the oil gone?

Bay of Isles marsh 2000


Smith Island 2000

Nope. But you knew that.

noaa

Most of the oiled mussels were as clean as unoiled mussels by 1992-93 (3-4 years)

Do Nothing...

 Often imposed by environmental conditions, habitat, or nature of the oil spill

Portland, ME 10/06/96

07/23/97

Key response issues

- Effectiveness of Response
- Comparing Response Options
- Response as the beginning of Restoration

A Consensus Process: Ecological Risk Assessment

Risk Assessment Basics

- Hazard Assessment
- Exposure Assessment
- Risk Assessment
- Risk Communication and management

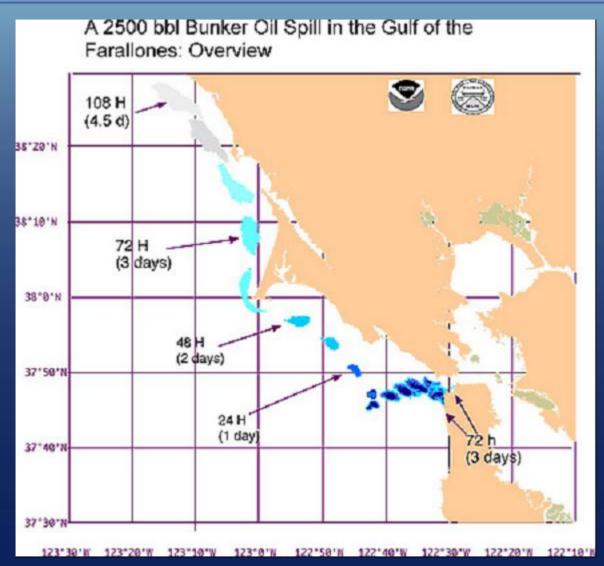
Ecological Risk Assessment

What spilled?

Where is it going?

Who will get hit?

What are their recovery times?


What are the response options?

How do the options change recovery time?

What are "best" tradeoffs?

A Scenario

Using modeling and scenario building to look at benefits and risks

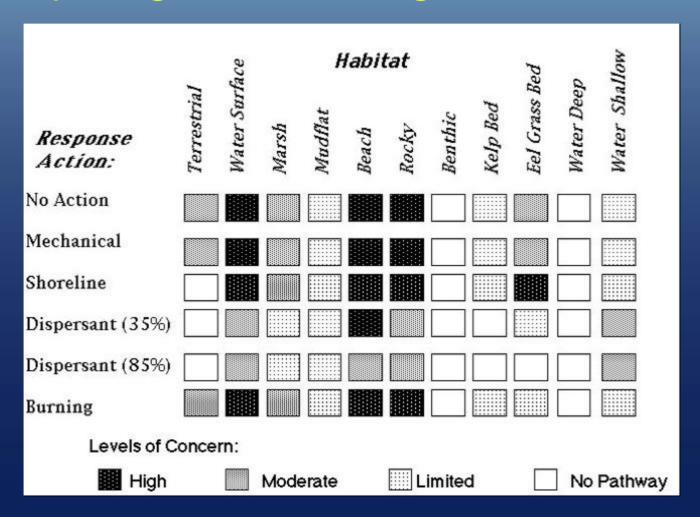
Risk Matrix

n

Recovery Time

% D		> 10 years	5 - 10 Years	1 to 5 Years	< 1 Year
Po	60 -100%	1A	1B	1C	1D
p u 1	40 - 60%	2A	2B	2C	2D
a t	20 - 40%	3A	3B	3C	3D
i O	1 - 20%	4A	4B	4C	4D

Comparing Ecological Recovery



Murre	() 4.4 - 10 · ·		~	100000000000000000000000000000000000000
		PIOVAr		
			UIIC	

No Response			
Skimming			
Dispersion			
Burning			
Shoreline Cleanup			

Comparing Risks Among All Resources

Results of Risk Assessment Workshops

Each Response Action has limits and environmental Tradeoffs, which are quantified:

No Action

Birds, maximum shoreline and water column impacts

Skimming

Weather, sea-state limits, slow, low effectiveness, waste generation

Burning

Weather, sea state, narrow window, logistics, residues

Results of Risk Assessment Workshops cont.

Dispersing

Weather, sea state, narrow window, short-term water column impacts

Shoreline

Long-term, mechanical damage to sensitive habitats, clean-up re-oiling of nearshore water, waste generation

So, is our knowledge good enough to make these kinds of conclusions?

What is the role of PAH Toxicity in all this?

How do we bridge the gap?