

Experience Music Project

Double Take

Scientific Roles or Levels of Experts

- Proponent -individual evaluates data and develops a particular hypothesis to explain the data.
- Evaluator -expert who is capable of evaluating the relative credibility of multiple alternative hypotheses to explain all potential hypotheses
- Resource Expert a technical expert with particular knowledge of a particular data set of importance to the analysis. Site specific experience.

Types of Consensus

- Each expert believes in the same deterministic model or the same value for a variable or model parameter.
- Each expert believes in the same probability distribution for an uncertain variable or model parameter.
- 3. All experts agree that a particular composite probability distribution represents them as a group.
- All experts agree that a particular composite probability distribution represents the overall scientific community.

Tuesday Breakout Activities

Place of Refuge Operational Decision Making

Wednesday Breakout Activities

Influence Diagram
Wiring Diagram for an Integrated Model

Influence Diagram (AKA Knowledge Map)

Our Task: Create an Influence Diagram with these two elements.

Resource dosage caused by a chemical plume passing by

Population level effects caused by a chemical plume passing by

Integrated Model Wiring Diagram: Modules for Consideration

Initial Information

- Spill Information
- Habitat and Species
- Field Sampling

Modules

- Case History Database
- 3D Circulation Model
- Source Function Model
- Transport Models
- Chemical Database
- Toxicology Database
- Species Equivalency Database
- Chemical Weathering, Reactions and Fate
- Oil Weathering and Fate
- Oil Toxicity
- 4D Visualization and Analysis

Thursday Breakout Activities

References

Environmental Information for Naval Warfare, National Academies Press

Ferson and Ginzburg (1996) "Different methods are needed to propagate ingnorances and variability." Reliability Engineering and System Safety 54:133-144.

Senior Seismic Hazard Analysis Committee, "Recommendation for Probabilitatic Seismic Hazard Analysis; Guidance on Uncertainty and Use of Experts" NUREG/CF-6372 UCRL-ID-122160 Vol I.

Types of Uncertainty

- Objective Uncertainty: Underlying stochastic variability of system dynamics. "Aleatory Uncertainty": the uncertainty inherent in a nondeterministic (stochastic, random) phenomenon; "off or depending on chance, luck, or contingency" (Webster's Dictionary).
- Subjective Uncertainty: Incomplete knowledge of the system. "Epistemic Uncertainty": the uncertainty attributable to incomplete knowledge about a phenomenon that affect our ability to model it; "of or having to do with knowledge" (Webster's Dictionary).

Questions

- What are acceptable/useful levels of prediction for biological/resource decision making?
 (50 ppb +/- 50 ppb at 50 m accuracy or bust!)
- What future effects can be predicted from biological models during response time-scale for use by decision makers?
- What spill information is needed on response time-scale (first hours to days) for resource prediction?

Resource Prediction and Types of Uncertainty

	Define	Objective Uncertainty	Subjective
	Predictive		Uncertainty
	Ability		
Acceptable			
Predictive Skill			
Moderate Predictive			
Skill			
Some Predictive Skill			
Low or No Predictive			
Skill			

Concentration Levels for Resource Prediction

Timescales of Resource Prediction

Identify Abilities and Needs for Prediction Horizontal Length Scale

Accuracy needed from chemical plume trajectory / concentrations					
	cm	m	100s m	Many km	
Organ System					
Individual					
T 1' '1 1					
Group					
Population					
D 1.1					
Species					

Identify Abilities and Needs for Prediction Vertical Length Scale

