

Efficiency assessment. modifications on the "IFP test"

Francois X Merlin (Cedre-France)

francois.merlin@cedre.fr

What is the Effectiveness of dispersion

- The ability for a given situation to change the surface oil in a suspension of oil droplets in the water column which can be assessed by measuring:
 - -quantity of the oil changed into droplets,
 - -the stability of the suspension
 - -% of water remove from the water surface,

Ways to assess the effectiveness of dispersion

spill of opportunity
field trials
pilot scale tests
laboratory tests

Field trials

Example of dispersion

Repetitive small scale sea trials: an alternative to large pilot scale tests

in the eighties : => WSL

=> Cedre IFP test

Figure 6. Medium scale field test-General procedure

Figure 7. Field test-Oil discharge system

Figure 8. Field test-Discharge of oil and dispersant spraying boat

Repetitive small scale sea trials: an alternative to large pilot scale tests

WSL in the eighties UK 2002 sea trials DEPOL 05

Repetitive small scale sea trials: an alternative to large pilot scale tests

Repetitive small scale sea trials

DEPOL 05

Similar concept:

Smalls slicks (150l)

4 oils (from 2000 to 10 000 cSt)

3 dispersants

3 DOR (5, 10, 15%)

visual assessment

Global note

+ 4 criteria:

brown oil plume

spreading

resurfacing

white dispersant plume

Control of the oil & dispersant application

pilot scale tests: floating cells

Piece of water column trapped inside curtains, open on the bottom:

- wave transparent
- natural dilution process

pilot scale tests: floating cells

pilot scale tests: flume test

pilot scale tests: flume test

Dispersibility versus weathering

Dispersed Oil Research Forum" - Coastal Response Research Center (CRRC) - February 1&2, 2007

window of opportunity for dispersion

laboratory tests

the IFP test

- Originally designed in 1983 1986 to replace a previous rotary flask test method
- Validated through field trials conducted in open sea and in sheltered area
- Official test method for the dispersant French approval scheme since 1988
- Listing of approved dispersants
 http://www.cedre.fr
- Use for dispersion study (e.g. oil dispersibility)

The IFP test

The IFP test

NF T 90 345

The IFP test

Efficiency = the proportion of dispersed oil collected after 1 hour in the beaker in comparison with what would have been recovered if the oil would have been a pure soluble compound

E = recovered dispersed oil theoretical amount of soluble prodt recovd

FRENCH DISPERSANT EFFICIENCY TEST

Low energy test

Hight Water / HC ratio : (5000 + 2500) / 5

"Medium term test": 1 hour

IFP test method

- Critical parameters of the test:
 - Dilution rate
 - Energy (frequency, stroke, depth of the beater)

solenoid

prototype

Mechanical energy source

Dispersed Oil Research Forum" - Coastal

Preliminary results

Evolution of the efficiency according to the speed rotation and different strokes

Preliminary results

Comparison of the regular test and the new one

Dispersant	A	В	C
Regular test	69±3	73±3	77±3
Test prototype	50 - 55	61 - 60	73 - 74

Efficacy of 3 dispersants A, B & C

New test design

Dispersed Oil Research Forum" - Coastal Response Research Center (CRRC) - February 1&2, 2007

Tests conditions comparison

Température : 20°C New test Viscosity : (1300 ± 100) mPas Density: 0,967 stroke: 30 mm Depth: 50 mm Speed: 72 cycles/min Energy: mechanical Température : 20°C Regular test Viscosity : (1300 ± 100) mPas Density: 0,967 Stroke: 15 mm Depth: 35 mm Speed: 15 cycles/min Energy: electric solenoid

Conclusions

These are preliminary results,
The next step will be to test different dispersants,
Sintef should get one equipment in order to carry out cross validation

In the dispersion process, the energy is a key factor.

Mechanically driven wave beater give the possibility:

- 1) to tune the energy level
- 2) possibly to quantify the energy supply to the system

It opens new possibilities for working on dispersion as:

- setting levels of dispersibility with the same test
- links with studies on the assessment of the wave energy

Cedre guidelines on dispersants

can be download on

www.cedre.fr

RESPONSE MANUAL

Table of contents

A. PREPAREDNESS - RESPONSE PLAN

- A.1 Why use dispersants at all?
- A.2 How do dispersants work?
- A.3 When can you spray dispersants?
- A.4 Types of dispersants
- A.5 Regulations: dispersant certification
- A.6 Geographical limits regarding the use of dispersants
- A.7 Size of stockpiles and how to manage them

B. SITUATION ASSESSMENT

- B.1 Slick characteristics
- B.2 Net Environmental Benefit Analysis (NEBA)
- B.3 Logistics requirements
- B.4 To spray or not to spray?

C. RESPONSE

- C.1 How to apply dispersants?
- C.2 Airborne treatment
- C.3 Shipborne treatment
- C.4 How much dispersant to use when spraying from an aircraft?
- C.5 How much dispersant to use when spraying from a vessel?
- C.6 How to treat a slick?
- C.7 Technical matters requiring attention prior to treatment
- C.8 Precautionary measures

