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Scope

* Describe physical processes involved in
upper ocean fluid dynamics and
implications for oll spills.

* Discuss observational methods,
mathematical description, and numerical
simulation.

* Qutline challenges and opportunities for
integrated oil-spill response modeling.



Oceanic Mixed Layer

Physical Phenomena



Upper Ocean Fluid Dynamics

* Very complex environment

— Motions occurring over a wide range of space
and time scales.

» Juxtaposition of order and disorder

— Nonlinear superposition of coherent features
(vortices, currents, waves) and turbulence.



Multi-Scale Ocean Processes
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Mixed Layer Processes
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Typical Scales

Processes Length  Time  Velocity
Surface Waves S0m 10s 1m/s
Ekman Currents o0m 3hrs 1-5¢cm/s
Wave-breaking lem-1m 0.01s-10s  1em/s-1m/s
turbulence

Thermal Convection | 2-100m 20min 5-20cm/s
Langmuir Circulation = 5-200m 20min | 5-10cm/s

Density Stratification = 10-100m  hrs-days = -
Internal Waves 50m-10km  “shr-hrs  5-100cm/s



Mixed Layer Diurnal Cyclmg
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Langmuir Circulation
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Implications: Banding
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Time scale: 20-30 minutes.



Implications: Lateral Dispersion
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 Lateral dispersion of 50m over 30 minutes.

* Cell lifetimes: 2 - 30 minutes.



Implications: Vertical Mixing

* Neutrally buoyant oil droplets follow mean LC
streamlines and diffuse to uniform distribution?

* |n practice, “mean unsteadiness” over 1-2 hour
periods, causes non-uniform distribution.

* If buoyant, potential exists for droplets to get
trapped in “Stommel Retention Zones™.
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Internal Wave-Induced Mixing
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Oceanic Mixed Layer

Observations, Mathematical
Modeling, and Simulation



Observing the Mixed Layer
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Mathematical Description:
Navier-Stokes Equations
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Required Inputs to NS Eqgns

* Boundary conditions:
— Air-sea interface.
— Bottom topography.
— Inflow and outflow for region of consideration.

 |nitial conditions:

— The state (instantaneous velocities) of the
entire mixed layer at the start time.

* Material properties:
— Viscosity, mean density, equation of state.



Numerical Simulation

Rules (NS egns) known, outcome not!

Solutions chaotic, prone to instability,
Involve nonlinear scale interactions.

Few exact analytical solutions known.

Equations “solved” numerically by
discretizing in space and time.

To obtain accurate solution, must resolve
all flow scales, from smallest to largest.



Computational Requirements

Large Eddies: 100m, 1min
Small Eddies: 0.01m, 0.01s

Grid size: 0.01m

# points: 102 for 1 large eddy
Time step: 0.01s

# time steps: 10* steps for 2 minutes
# unknowns: 4 x10"°

# operations: 100/unknown — 4 x 108

Total computer time on 10 Gflop computer =1 year !!!!



Oceanic Mixed Layer

Challenges and Opportunities for
Oil Spill Response



Challenge: Simulation of
Multi-Scale Nonlinear Systems

* Must “sweat the small stuff” - O(1) effect
over long times due to nonlinearity.

 Examples
— Pipe flow (turbulent fluctuations)
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— LC (surface waves)

BUT computationally prohibitive!



Multi-Scale Computation:

Stochastic
models

Opportunities

Multi-scale
asymptotic
models

Rationally-derived,

simplified
models

Reduced-order
models




Craik & Leibovich LC Model

* C-L idea: prescribe surface waves & then
filter, exploiting time-scale separation.

* CL egns = wave-filtered NS egns
(additional “vortex force™” terms).

« Key input: wave Stokes drift velocity profile.

 Significant computational and analytical
advantages.



Current Multi-Scale LC Research

Systematically exploit scale disparity to
reduce dimensionality and computational
complexity.

 Craik-Leibovich egns for LC.

* Meso-scale flow / LC field.

* Elongated vortical structures.

* Narrow downwelling zones within 1 cell.
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Challenge: Transport and Mixing

» Given fluid dynamics, prediction of
transport involves solving

— Particle tracking models.
— Two-fluid flows, interfacial phenomena.

» Coherent flow structures give rise to non-
uniform mixing, “anomalous diffusion”.

— e.g. convergences, stagnation points,
recirculation zones.



Transport & Mixing: Opportunities

* Use dynamical systems and stochastic
approaches.

— Chaotic mixing, lobe dynamics, Lagrangian
coherent structures, PDF methods.

« Use multi-scale methods to couple
transport with ecology & toxicology.

— LC downwelling jets = site of oil-accumulation
and biomass.



Challenge: Unknown Boundary and
Initial Conditions

« Simulations of mixed-layer dynamics and
transport require knowledge of BCs, ICs.

 Measurements of ocean mixed layer
notoriously difficult to make.

* Qil-spill environment — data starved!



BCs & ICs: Opportunities

* Modify computational models to operate in
alternative “adjoint” mode.

— Sensitivity analyses (quantify dependence of
statistics on unknown inputs).

— Data assimilation (keep forecasts on track).

* Develop reduced (multi-scale) models.
— Operate in adjoint mode.
— Use with remotely sensed data.
— Require fewer inputs.



Summary

Mixed layer incredibly complex multi-scale
environment (3D, time-dependent).

LC key mechanism for vertical transport,
Impacting dispersant usage and ecology.

Interplay of coherent and disordered flow
structures complicates transport prediction.

Multi-scale numerical methods needed.
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