Acute and population level effects of exposure to dispersant, oil and dispersed oil on multiple life history stages of *Eurytemora affinis*

Gina Coelho, Don Aurand & Ann Slaughter Ecosystem Management & Associates, Inc.

Experimental Objectives

- Evaluate the relationship between laboratory toxicity tests, expected field exposures and possible population level effects of dispersant, oil and dispersed oil
 - > Use multiple life history stages
 - > Use a ubiquitous, easily cultured planktonic species
 - > Use realistic exposure regimes
 - Use protocols which allow comparisons to existing data sets

Experimental Test Organism

- Eurytemora affinis
 - Estuarine copepod
 - Can tolerate a wide range of salinity/temperature combinations
 - Easily cultured in the lab
 - Short life history

Some relevant toxicity data is available for comparison

Experimental Design Phase I

- Determine Acute Toxicity Impacts
- Obtain 24 and 48-hour LC50 values for nauplii, copepodites, and mature adults
 - Dispersant alone
 - Water Accommodated Fraction (WAF) of weathered Alaskan North Slope (ANS) crude oil

Chemically enhanced WAF (dispersed oil or CE-WAF) of weathered ANS crude oil

Experimental Design Phase 2

- Examine multi-generational impacts from short-term exposure
- Expose nauplii to the LC50 concentration for 24 hours
- Transfer surviving organisms to grow-out culture chambers (in clean culture water) and observe through multiple generations (f2 or more)
 - > 40 chambers (20 treatment, 20 control)
 - Examine life history stage in five chambers at T=12d, 19d, 26d, and 33d
 Recearch Center

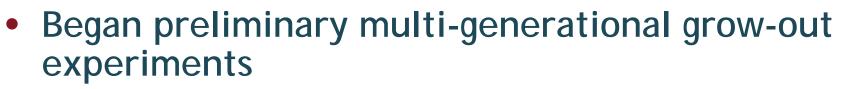
Experimental Design Phase 3

- Examine impacts from UV exposure
- Multi-generational grow out experiments using Phase 2 experimental design
- Animals are exposed to UV light for several hours after toxicant exposure
- Determine if photo-enhanced toxicity impacts exist

Results to Date: Pitfalls

- Early *Eurytemora affinis* life history stages cannot be used in the CROSERF chambers
- An attempt to devise a static spikedexposure protocol approximating the CROSERF exposure through dilution was unsuccessful

• The CROSERF chambers are not compatible with UV exposure requirements



Results to Date: Successes

- Redesigned exposure regime
 - Adopted a static 24 and 48 hour exposure protocol
 - Results will not be linked to previous CROSERF data
- Used new protocol to obtain LC50s for
 - Dispersant
 - Water-Accommodated Fraction (WAF) of weathered oil

Chemically-enhanced WAF (CE-WAF) of weathered oil

Results to Date: Constant Static 24 Hour and 48 Hour Exposure LC50s (C9500 & weathered ANS)

Actual LC50 (C9500 & TPH)					
	Copepods	Copepodites	Nauplii		
C9500					
24 HR	19 ppm	14 ppm	5.2 ppm		
48 HR	15 ppm	9.6 ppm	6.3 ppm		
WAF					
24 HR	TBD	TBD	incalculable		
48 HR	incalculable	499 ppb	51 ppb		
CE-WAF					
24 HR	299 ppb	1651 ppb	incalculable		
48 HR	351 ppb	846 & 1969 ppb	30 ppb		
96 HR	216 ppb	1806 ppb			

Results to Date: Constant Static 24 Hour and 48 Hour Loading Rate LC50s (C9500 & weathered ANS)

	Copepods	Copepodites	Nauplii
C9500			
24 HR	19 ppm	14 ppm	5.2 ppm
48 HR	15 ppm	9.6 ppm	6.3 ppm
WAF			
24 HR	TBD	TBD	1456 ppm
48 HR	1849 ppm	2616 ppm	1117 ppm
CE-WAF			
24 HR	41 ppm	64 ppm	7.6 ppm
48 HR	51 ppm	52 & 54 ppm	7.7 ppm
96 HR	44 ppm	73 ppm	
			l Response Re

Results to Date: Grow Out Study

- Basic Life History Studies
 - Nauplii used for toxicant and UV exposure (most sensitive life stage)
 - Exposed for 24 hours at the previously determined naupliar LC50
 - > 10 nauplii per beaker for grow out
- UV Exposure Grow Out
 - Source Solar (heat/chiller bath at 21C)
 - Intensity Based on March 30, 2007, 10 cm below surface

- UVA 2400 µW/cm² (33% of Surface Irradiance)
- UVB 20 µw/cm² (57% of Surface Irradiance)
- Duration Peak hours 1000 to 1400

Results to Date:

Grow Out Study

Expt 58 - Dispersant Grow Out (5.18 ppm)						
	Со	Control		Toxicant		
Count	Total	Std. Dev.	Total	Std. Dev.		
T=12	685	28	652	46		
T=19	813	206	788	193		
T=26	416	48	433	183		
T=33	123	37	184	67		

Expt 62 - Dispersant Grow Out (6.19 ppm) with UV Exposure

13

► T=12 count 4/15/07

University New Hamps

	Expt 61 -	Expt 61 - Dispersant Grow Out (6.9 ppm)				4/15/07
		Control		Toxicant		
onse	Count	Total	Std. Dev.	Total	Std. Dev.	
1	T=12	770	57	842	354	
r of shire	T=19	395	120	447	193	
	T=26	TBD	TBD	TBD	TBD	
	T=33	TBD	TBD	TBD	TBD	h center
					Co	astal Response Research Center

Application of Results


- Results should provide a better estimate of the long-term consequences of dispersing oil into the water column
- Spill response community (decision makers, emergency responders, etc.) will be able to make more informed decisions about the use of dispersants, particularly in nearshore environments

Acknowledgement

Funding for this project was provided by the Coastal Response Research Center www.crrc.unh.edu

